Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Microwave Assisted Preparation of Self-Extinguishing Cotton Fabrics by Small Molecules Containing Phosphorous and Nitrogen

Author(s): SeChin Chang*, Brian Condon and Jade Smith

Volume 6, Issue 1, 2019

Page: [3 - 12] Pages: 10

DOI: 10.2174/2213335606666190301160053

Price: $65

Abstract

Introduction: New methods for preparing surface modification of flame retardant cotton fabrics were employed by applying a microwave-assisted technique with a minimum amount of co-solvent. Efforts at flame retardant cotton fabrics treated with economic and environmentally friendly flame retardant compounds based on the small molecules piperazine, PN and PNN, were done successfully.

Methods and Results: The evidence of flame retardant chemical penetrations or surface modification of cotton fabrics was confirmed by Scanning Electron Microscope (SEM), and the treated cotton fabrics were evaluated by flammability tests, such as 45°angle (clothing textiles test) and limiting Oxygen Index (LOI). Thermogravimetric analysis of all treated cotton fabrics in a nitrogen atmosphere showed high thermal stability, as decomposition occurred between 276.9~291.2°C with 30.5~35.7% residue weight char yield at 600°C. Limiting Oxygen Index (LOI) and the 45° angle flammability test were used to determine the efficiency of the flame-retardant treatments on the fabrics. LOI values for control twill fabric showed ~18 vol% oxygen in nitrogen, whereas the highest treatment level had 32 vol%. High add-on treatments with flame retardants also readily passed the 45° angle flammability test.

Conclusion: In the Microscale Combustion Calorimeter (MCC) tests, a decline in heat of combustion was shown through the smaller values acquired for THR, HRC and Tmax for all PN and PNN samples.

Keywords: 45° angle flammability test, cotton fabric, flame retardant, limiting oxygen index, microwave, thermal degradation.

Graphical Abstract
[1]
Takigami, H.; Suzuki, G.; Hirai, Y.; Sakai, S. Transfer of brominated flame retardants from components into dust inside television cabinets. Chemosphere, 2008, 73, 161-169.
[2]
Macgregor, J.T.; Diamond, M.J.; Mazzeno, Jr. L.W.; Friedman, M. Mutagenicity tests of fabric-finishing agents in Salmonella typhimurium: fiber-reactive wool dyes and cotton flame retardants. Environ. Mutat, 1980, 2, 405-418.
[3]
Wyrzykowska-Ceradini, B.; Gullett, B.K.; Tabor, D.; Touati, A. PBDDs/Fs and PCDDs/Fs in the raw and clean flue gas during steady state and transient operation of a municipal waste combustor. Environ. Sci. Technol., 2011, 45, 5853-5860.
[4]
Salmeia, K.A.; Gaan, S.; Malucelli, G. Recentadvanced for flame retardancy of textiles based on phosphorus chemistry. Polymers, 2016, 8, 319-355.
[5]
Kishore, K.; Mohandas, K. Action of phosphorous compounds on fire-retardancy of cellulosic materials: A review. Fire Mater., 1982, 6(2), 54-58.
[6]
Hindersinn, R. Fire Retardancy.Mark, H.P.; Gaylord, N.G.; Bikales, N.M. (Eds), Encyclopedia of Polymer Science and Technology. , 1977, 2, pp. 270-330.
[7]
Hendrix, J.E.; Bostic, Jr. J.E.; Olson, E.S.; Barker, R.H. Pyrolysis and combustion of cellulose. I. Effects of triphenyl phosphate in the presence of nitrogenous bases. J. Appl. Polym. Sci., 1970, 14, 1701-1723.
[8]
Tesoro, G.C.; Sello, S.B.; Willard, J.J. Flame-retardant properties of phosphonate derivatives of cotton cellulose. Text. Res. J., 1968, 38, 245-255.
[9]
Tesoro, G.C. Flame retardants for cotton fabrics. Textilveredlung, 1967, 2(7), 435-440.
[10]
Nguyen, T.D.; Chang, S.; Condon, B.D.; Uchimiya, S.M.; Fortier, C. Development of an environmentally friendly halogen-free flame retardant for cotton. Polym. Adv. Technol., 2012, 23, 1555-1563.
[11]
Arni, P.C.; Jones, E. Prepareation of N-alkenyl- and N-m-styryl-phosphoramidates and their application as flame retardants for wood. J. Appl. Chem., 1964, 14, 221-229.
[12]
Chen, L. Song, L.; Lv, P.; Jie, G.; Tai, Q.; Xing, W.; Hu, Y. A new intumescent flame retardant containing phosphorus and nitrogen: preparation, thermal properties and application to UV curable coating. Prog. Org. Coat., 2011, 70, 59-66.
[13]
Hendrix, J.E.; Drake, G.L.; Barker, R.H. Pyrolysis and combustion of cellulose. III Mechanistic basis for the synergism involving organic phosphates and nitrogenous bases. J. Appl. Polym. Sci., 1972, 16, 257-274.
[14]
Langley, J.T.; Drews, M.J.; Barker, R.H. Pyrolysis and combustion of cellulose. VII. Thermal analysis of the phosphorylation of cellulose and model carbohydrates during pyrolysis in the presence of aromatic phosphates and phosphoramides. J. Appl. Polym. Sci., 1980, 25, 243-262.
[15]
Calzia, J.K.; Forcum, A.; Lesser, A.J. Comparing reinforcement strategies for epoxy networks using reactive and non-reactive fortifiers. J. Appl. Polym. Sci., 2006, 102, 4606-4615.
[16]
Nguyen, C.T.; Kim, J.W. Thermal stabilities and flame retardancies of nitrogen-phosphorous flame retardants based on bisphosphoramidates. Polym. Degrad. Stabil., 2008, 93, 1037-1043.
[17]
Chang, S.; Nguyen, M.; Condon, B.; Smith, J. The comparison of phosphorus-nitrogen and sulfur-phosphorus-nitrogen on the anti-flammability and thermal degradation of cotton fabrics. Fiber Polym., 2017, 18(4), 666-674.
[18]
Gaan, S.; Rupper, P.; Salimova, V.; Heuberger, M.J. Characterization of chars obtained from cellulose treated with phosphoramidate flame retardants. Anal. Appl. Pyrolysis, 2010, 87, 93-98.
[19]
Lee, H.L.; Chen, G.C.; Rowell, R.M. Thermal properties of wood reacted with a phosphorus pentoxide-amine system. J. Appl. Polym. Sci., 2004, 91, 2465-2481.
[20]
Polshettiwar, V.; Nadagouda, M.N.; Varma, R.S. Microwave-assisted chemistry: A rapid and sustainable route to synthesis of organic and nanomaterials. Aust. J. Chem., 2009, 62, 16-26.
[21]
Caddick, S. Microwave assisted organic reactions. Tetrahedron, 1995, 51, 10403-10432.
[22]
Strauss, C.R.; Trainor, R.W. Developments in microwave-assisted organic chemistry. Aust. J. Chem., 1995, 48, 1665-1692.
[23]
Zhu, J.; Palchik, O.; Chen, S.; Gedanken, A. Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles. J. Phys. Chem. B, 2000, 104(31), 7344-7347.
[24]
Gonzalez-Arellano, C.; Balu, A.M.; Luque, R.; Macquarrie, D.J. Catalytically active self-assembled silica-based nanostructures containing supported nanoparticles. Green Chem., 2010, 12, 1995-2002.
[25]
Chen, S.Q.; Wang, Y. Microwave-assisted synthesis of a Co3O4 -graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem., 2010, 20, 9735-9739.
[26]
Gonzalez-Arellano, C.; Luque, R.; Macquarrie, D.J. Nanotubular self-assembly of n-dodecylamine-TEOS-water-acetonitrile mixtures. Chem. Commun., 2009, 30, 4581-4583.
[27]
Dogan, H.; Hilmioglu, N.D. Dissolution of cellulose with NMMO by microwave heating. Carbohydr. Polym., 2009, 75, 90-94.
[28]
Semsarilar, M.; Perrier, S. Solubilization and functionalization of cellulose assisted by microwave irradiation. Aust. J. Chem., 2009, 62, 223-226.
[29]
Hou, A.; Wang, X.; Wu, L. Effect of microwave irradiation on the physical properties and morphological structure of cotton cellulose. Carbohydr. Polym., 2008, 74, 934-937.
[30]
Li, J.; Zhang, L.; Peng, F.; Bian, J.; Yuan, T.; Xu, F.; Sun, R. Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules, 2009, 14, 3551-3566.
[31]
Possidonio, S.; Fidale, L.C.; Seoud, O.A.E. Microwave assisted derivatization of cellulose in an ionic liquid: An efficient, expedient synthesis of simple and mixed carboxylic esters. J. Polym. Sci. Part A Polym. Chem., 2009, 48, 134-143.
[32]
Gospodinova, N.; Grelard, A.; Jeannin, M.; Chitanu, G.C.; Carpov, A.; Thiery, V.; Besson, T. Efficient solvent-free microwave phosphorylation of microcrystalline cellulose. Green Chem., 2002, 4, 220-222.
[33]
Nguyen, T.M.; Chang, S.; Condon, B.; Thomas, T.; Azadi, P. Thermal decomposition reactions of cotton fabrics treated with piperazine-phosphonates derivatives as a flame retardant. J. Anal. Appl. Pyrolysis, 2014, 110, 122-129.
[34]
ASTM D 2863-13: Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index), American Society for Testing and Materials.
[35]
Standard test method for flame resistance of textiles 2001.American Society for Standards and Testing, ASTM D-1230-01..
[36]
Nguyen, T.M.; Chang, S.; Condon, B. The comparison of differences in flammability and thermal degradation between cotton fabrics treated with phosphoramidate derivatives. Polym. Adv. Technol., 2014, 25, 665-672.
[37]
Gaan, S.; Mauclaire, L.; Rupper, P.; Salimova, V.; Tran, T.T.; Heuberger, M. Thermal degradation of cellulose acetate in presence of bis-phosphoramidates. J. Anal. Appl. Pyrolysis, 2011, 90, 33-41.
[38]
Muralidhara, K.S.; Sreenivasan, S. Thermal degradation and burning behavior of cellulose based and cellulose-silk blended upholstery fabric. J. Sci. Ind. Res., 2010, 69, 879.
[39]
Wang, S.; Liu, Q.; Luo, Z.; Wen, L.; Cen, K. Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy. Front. Energy Power Eng. China, 2007, 1, 413-419.
[40]
Nguyen, T.M.; Chang, S.; Condon, B.; Slopek, R.; Graves, E.; Yoshioka-Tarver, M. Structural effect of phosphoramidate derivatives on the thermal and flame retardant behaviors of treated cotton cellulose. Ind. Eng. Chem. Res., 2013, 52, 4715-4724.
[41]
Faroq, A.A.; Price, D.; Milnes, G.J.; Horrocks, A.R. Thermogravimetric analysis study of the mechanism of pyrolysis of untreated and flame retardant treated cotton fabrics under a continuous flow of nitrogen. Polym. Degrad. Stabil., 1994, 44, 323-333.
[42]
Bajaj, P. Heat and flame protection. In:Horrocks, A.R. and Anand, S.C., Eds., ; Handbook of Technical Textiles. . Woodhead Publishing and CRC Press: Boca Raton, FL, USA, 2000, pp. 223-263.
[43]
Purser, D.; Horrocks, A.R. Toxicity of fire retardants in relation to life, safety and environmental hazards and Textiles. In: Horrocks, A. R. and Price, D., Eds., ; Fire Retardant Materials.. CRC Press: Boca Raton, FL, USA, 2001, pp. 62-181.
[44]
Nam, S.; Condon, B.; Parikh, D.V.; Zhao, Q.; Cintron, M.S.; Madison, C. Effect of urea additive on the thermal decomposition of greige cotton nonwoven fabric treated with diammonium phosphate. Polym. Degrad. Stabil., 2011, 96, 2010-2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy