Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Fabrication and Characterization of Gelatin Electrospun Fiber Containing Cardamom Essential Oil

Author(s): Maryam Farahmand, Nasireh Alavi and Mohammadreza Khalesi*

Volume 10, Issue 3, 2020

Page: [292 - 305] Pages: 14

DOI: 10.2174/2210681209666190218145058

Price: $65

Abstract

Background: Gelatin electrospun fibers incorporated with extracted cardamom Essential Oil (EO) were developed and characterized.

Materials & Methods: The gelatin solutions were evaluated in terms of conductivity, morphology, fourier transform infrared spectroscopy, and the effect of cardamom EO on the gelatin fibers. Cardamom EO showed significant antioxidant activity with IC50 value of 5 μg/mL. The extract contained several active components including Cyclohexene, 1-methyl-4-(1-methylethylidene) and Eucalyptol (1.8-cineol) as the most abundant components.

Results: The images of the scanning electron microscopy revealed formation of nanofibers from gelatin solution with significant entanglement. Furthermore, discrete beads were appeared by increasing the concentrations of cardamom EO in the gelatin fibers. Reduction in conductivity parameter of EO solutions could explain the observed defects. The fourier transform infrared spectra showed the formation of hydrogen bonds in gelatin fibers. The infrared as well as spectrophotometric spectra confirmed that EO was effectively involved in electrospun fibers.

Conclusion: In conclusion, gelatin –a natural biopolymer, incorporated with cardamom EO forms smooth fabricated electrospun nanofibers.

Keywords: Gelatin, electrospinning, essential oil, cardamom, antioxidant activity, nanofibers.

Graphical Abstract
[1]
Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications. Food Hydrocoll., 2016, 55, 11-18.
[2]
Ghorani, B.; Tucker, N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll., 2015, 51, 227-240.
[3]
Senthamizhan, A.; Balusamy, B.; Uyar, T. Glucose sensors based onelectrospun nanofibers: A review. Anal. Bioanal. Chem., 2016, 408(5), 1285-1306.
[4]
Li, L.; Hsieh, Y.L. Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr. Res., 2006, 341(3), 374-381.
[5]
Steyaert, I.; Rahier, H.; Van Vlierberghe, S.; Olijve, J.; De Clerck, K. Gelatin nanofibers: Analysis of triple helix dissociation temperature and cold-water-solubility. Food Hydrocoll., 2016, 57, 200-208.
[6]
Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds. Food Chem., 2009, 117(1), 160-168.
[7]
Moon, Y.S.; Uyama, H.; Inoue, S.; Tabata, Y. Fabrication of non-woven mats of gelatin/poly (L-lactic acid) composites by electrospinning and their application for scaffold of cell proliferation. Chem. Lett., 2006, 35(6), 564-565.
[8]
Venugopal, J.R.; Low, S.; Choon, A.T.; Kumar, A.B.; Ramakrishna, S. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif. Organs, 2008, 32(5), 388-397.
[9]
Zhang, S.; Huang, Y.; Yang, X.; Mei, F.; Ma, Q.; Chen, G.; Deng, X. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J. Bio-Med. Mater. Res. Part A, 2009, 90(3), 671-679.
[10]
Jafari, J.; Emami, S.H.; Samadikuchaksaraei, A.; Bahar, M.A.; Gorjipour, F. Electrospun chitosan–gelatin nanofiberous scaffold: Fabrication and in vitro evaluation. Biomed. Mater. Eng., 2011, 21(2), 99-112.
[11]
Huang, Z.M.; Zhang, Y.Z.; Ramakrishna, S.; Lim, C.T. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer., 2004, 45(15), 5361-5368.
[12]
Jeong, L.; Park, W.H. Preparation and characterization of gelatin nanofibers containing silver nanoparticles. Int. J. Mol. Sci., 2014, 15(4), 6857-6879.
[13]
Agarwal, S.; Wendorff, J.H.; Greiner, A. Progress in the field of electrospinning for tissue engineering applications. Adv. Mater., 2009, 21(32-33), 3343-3351.
[14]
Sadeghi, A.; Pezeshki-Modaress, M.; Zandi, M. Electrospun polyvinyl alcohol/gelatin/chondroitin sulfate nanofibrous scaffold: Fabrication and in vitro evaluation. Int. J. Biol. Macromol., 2018, 114, 1248-1256.
[15]
Kidoaki, S.; Kwon, I.K.; Matsuda, T. Mesoscopic spatial designs of nano-and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials, 2005, 26(1), 37-46.
[16]
Li, Y.; Lim, L.T.; Kakuda, Y. Electrospun zein fibers as carriers to stabilize(−)-epigallocatechin gallate. J. Food Sci., 2009, 74, 233-240.
[17]
Xu, H.; Yan, Y.; Li, S. PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Biomaterials, 2011, 32(20), 4506-4516.
[18]
Deumens, R.; Bozkurt, A.; Meek, M.F.; Marcus, M.A.; Joosten, E.A.; Weis, J.; Brook, G.A. Repairing injured peripheral nerves: bridging the gap. Prog. Neurobiol., 2010, 92(3), 245-276.
[19]
Tabesh, H.; Amoabediny, G.H.; Nik, N.S.; Heydari, M.; Yosefifard, M.; Siadat, S.R.; Mottaghy, K. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem. Int., 2009, 54(2), 73-83.
[20]
Ciardelli, G.; Chiono, V. Materials for peripheral nerve regeneration. Macromol. Biosci., 2006, 6(1), 13-26.
[21]
Padmakumari Amma, K.P.A.; Venugopalan Nair, P.N.; Sasidharan, I.; Priya Rani, M. Chemical composition, flavonoid-phenolic contents and radical scavenging activity of four major varieties of cardamom. Int. J. Biol. Med. Res., 2010, 1, 20-24.
[22]
Morsy, N.F. A short extraction time of high quality hydrodistilled cardamom (Elettaria cardamomum L. Maton) essential oil using ultrasound as a pretreatment. Ind. Crops Prod., 2015, 65, 287-292.
[23]
Nahr, F.K.; Ghanbarzadeh, B.; Hamishehkar, H.; Kafil, H.S. Food grade nanostructured lipid carrier for cardamom essential oil: Preparation, characterization and antimicrobial activity. J. Funct. Foods, 2018, 40, 1-8.
[24]
Stanley, J.; Chandrasekaran, S.; Preetha, G.; Kuttalam, S. Physical and biological compatibility of diafenthiuron with micro/macro nutrients fungicides and biocontrol agents used in cardamom. Arch. Phytopathol. Pant Protect., 2010, 43(14), 1396-1406.
[25]
Parry, J.; Hao, Z.; Luther, M.; Su, L.; Zhou, K.; Yu, L. Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. J. Am. Oil Chem. Soc., 2007, 84(6), 613.
[26]
Prasath, D.; Senthilkumar, R.; Leela, N.K. Hybrid performance for yield and yield components in cardamom (Elettaria cardamom Maton). Euphytica, 2009, 168(1), 49-60.
[27]
Prasath, D.; Venugopal, M.N. Compound inflorescence cardamom (Elettaria cardamomum (L.) Maton) in India. Genet. Resour. Crop Evol., 2009, 56(6), 749-753.
[28]
Tavassoli-Kafrani, E.; Goli, S.A.H.; Fathi, M. Fabrication and characterization of electrospun gelatin nanofibers crosslinked with oxidized phenolic compounds. Int. J. Biol. Macromol., 2017, 103, 1062-1068.
[29]
Goswami, P.; Mandal, P.; Jha, P.; Misra, T.; Barat, S. Antioxidant activities of different spices on the lipid oxidation of cooked and uncooked fillet of two fish species belonging to the genus Puntius. J. Agric. Sci. Technol., 2013, 15(4), 737-746.
[30]
Keramat, M.; Esteghlal, S.; Safari, J.; Golmakani, M-T.; Khalesi, M. Fabrication of electrospun persian gum/poly (vinyl alcohol) and whey protein isolate/ poly (vinyl alcohol) nanofibers incorpo-rated with Oliveria decumbens Vent. Essential Oil. Nanosci. Nanotechnol. Asia, 2019. [Epub ahead of print].
[31]
Olivero-Verbel, J.; González-Cervera, T.; Güette-Fernandez, J.; Jaramillo-Colorado, B.; Stashenko, E. Chemical composition and antioxidant activity of essential oils isolated from Colombian plants. Rev. Bras. de Farmacogn., 2010, 20(4), 568-574.
[32]
Marongiu, B.; Piras, A.; Porcedda, S. Comparative analysis of the oil and supercritical CO2 extract of Elettaria cardamomum (L.) Maton. J. Agric. Food Chem., 2004, 52(20), 6278-6282.
[33]
Aceituno-Medina, M.; Mendoza, S.; Lagaron, J.M.; López-Rubio, A. Development and characterization of food-grade electrospun fibers from amaranth protein and pullulan blends. Food Res. Int., 2013, 54(1), 667-674.
[34]
Deng, L.; Kang, X.; Liu, Y.; Feng, F.; Zhang, H. Characterization of gelatin/zein films fabricated by electrospinning vs solvent casting. Food Hydrocoll., 2018, 74, 324-332.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy