Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook

Author(s): Ayça Bal-Öztürk*, Beatrice Miccoli, Meltem Avci-Adali, Ferzaneh Mogtader, Fatemeh Sharifi, Berivan Çeçen, Gökçen Yaşayan, Dries Braeken and Emine Alarcin*

Volume 24, Issue 45, 2018

Page: [5437 - 5457] Pages: 21

DOI: 10.2174/1381612825666190206195304

Price: $65

Abstract

The skin is the largest and most exposed organ in the human body. Not only it is involved in numerous biological processes essential for life but also it represents a significant endpoint for the application of pharmaceuticals. The area of in vitro skin tissue engineering has been progressing extensively in recent years. Advanced in vitro human skin models strongly impact the discovery of new drugs thanks to the enhanced screening efficiency and reliability. Nowadays, animal models are largely employed at the preclinical stage of new pharmaceutical compounds development for both risk assessment evaluation and pharmacokinetic studies. On the other hand, animal models often insufficiently foresee the human reaction due to the variations in skin immunity and physiology. Skin-on-chips devices offer innovative and state-of-the-art platforms essential to overcome these limitations. In the present review, we focus on the contribution of skin-on-chip platforms in fundamental research and applied medical research. In addition, we also highlighted the technical and practical difficulties that must be overcome to enhance skin-on-chip platforms, e.g. embedding electrical measurements, for improved modeling of human diseases as well as of new drug discovery and development.

Keywords: Skin-on-chip, In vitro skin model, Skin tissue engineering, Microfluidic, Drug discovery and development, skin impedance.

[1]
Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 2012; 12(12): 2156-64.
[2]
Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv Rev 2014; 69-70: 81-102.
[3]
Esch MB, King TL, Shuler ML. The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng 2011; 13: 55-72.
[4]
Esch MB, Mahler GJ, Stokol T, Shuler ML. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 2014; 14(16): 3081-92.
[5]
Esch MB, Smith AS, Prot JM, Oleaga C, Hickman JJ, Shuler ML. How multi-organ microdevices can help foster drug development. Adv Drug Deliv Rev 2014; 69-70: 158-69.
[6]
Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 2015; 14(4): 248-60.
[7]
Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 2013; 110(9): 3507-12.
[8]
Mak IWY, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 2014; 6(2): 114-8.
[9]
Joshi PN. Cells and Organs on Chip—A Revolutionary Platform for Biomedicine. Lab-on-a-Chip Fabrication and Application: In- Tech. 2016.
[10]
Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip 2017; 17(14): 2395-420.
[11]
Greek R, Menache A. Systematic reviews of animal models: methodology versus epistemology. Int J Med Sci 2013; 10(3): 206-21.
[12]
Serpell J. In the company of animals: A study of human-animal relationships 1996.
[13]
Schmook FP, Meingassner JG, Billich A. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int J Pharm 2001; 215(1-2): 51-6.
[14]
Europe C. 2004. European Union Cosmetics Directive 76/768. EEC-Consolidated version (https: //www cosmeticseurope eu/publications-cosmetics-europe-association/european-unioncosmeticsdirectives html
[15]
Almeida A, Sarmento B, Rodrigues F. Insights on in vitro models for safety and toxicity assessment of cosmetic ingredients. Int J Pharm 2017; 519(1-2): 178-85.
[16]
Taylor K, Gordon N, Langley G, Higgins W. Estimates for worldwide laboratory animal use in 2005. 2008.
[17]
DiMasi JA, Grabowski HG. The cost of biopharmaceutical R&D: is biotech different? Manage Decis Econ 2007; 28(4‐5): 469-79.
[18]
Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol 2014; 32(1): 40-51.
[19]
Adams CP, Brantner VV. Spending on new drug development1. Health Econ 2010; 19(2): 130-41.
[20]
Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 2010; 9(3): 203-14.
[21]
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 2016; 47: 20-33.
[22]
Buist HE, Schaafsma G, van de Sandt JJM. Relative absorption and dermal loading of chemical substances: Consequences for risk assessment. Regul Toxicol Pharmacol 2009; 54(3): 221-8.
[23]
Ngo MA, O’Malley M, Maibach HI. Percutaneous absorption and exposure assessment of pesticides. J Appl Toxicol 2010; 30(2): 91-114.
[24]
Yun YE, Jung YJ, Choi YJ, Choi JS, Cho YW. Artificial skin models for animal-free testing. J Pharm Investig 2018. [Internet].
[25]
Eungdamrong NJ, Higgins C, Guo Z, et al. Challenges and promises in modeling dermatologic disorders with bioengineered skin. Exp Biol Med (Maywood) 2014; 239(9): 1215-24.
[26]
Bhise NS, Ribas J, Manoharan V, et al. Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 2014; 190: 82-93.
[27]
Baker M. Tissue models: a living system on a chip. Nature 2011; 471(7340): 661-5.
[28]
Graham DJ, Campen D, Hui R, et al. Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-inflammatory drugs: nested case-control study. Lancet 2005; 365(9458): 475-81.
[29]
Selimović S, Dokmeci MR, Khademhosseini A. Organs-on-a-chip for drug discovery. Curr Opin Pharmacol 2013; 13(5): 829-33.
[30]
El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006; 442(7101): 403-11.
[31]
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32(8): 760-72.
[32]
Capulli AK, Tian K, Mehandru N, et al. Approaching the in vitro clinical trial: engineering organs on chips. Lab Chip 2014; 14(17): 3181-6.
[33]
Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011; 21(12): 745-54.
[34]
Hutson MS, Alexander PG, Allwardt V, Aronoff DM, Bruner-Tran KL, Cliffel DE, et al. Organs-on-chips as bridges for predictive toxicology. Appl In Vitro Toxicol 2016; 2(2): 97-102.
[35]
Moraes C, Mehta G, Lesher-Perez SC, Takayama S. Organs-on-a-chip: a focus on compartmentalized microdevices. Ann Biomed Eng 2012; 40(6): 1211-27.
[36]
Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems. Small 2016; 12(17): 2253-82.
[37]
Zhang Z, Michniak-Kohn BB. Tissue engineered human skin equivalents. Pharmaceutics 2012; 4(1): 26-41.
[38]
Abaci HE, Drazer G, Gerecht S. Recapitulating the vascular microenvironment in microfluidic platforms. Nano Life 2013; 3(01): 1340001.
[39]
Ataç B, Wagner I, Horland R, et al. Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip 2013; 13(18): 3555-61.
[40]
Abaci HE, Gledhill K, Guo Z, Christiano AM, Shuler ML. Pumpless microfluidic platform for drug testing on human skin equivalents. Lab Chip 2015; 15(3): 882-8.
[41]
Guo Z, Higgins CA, Gillette BM, et al. Building a microphysiological skin model from induced pluripotent stem cells. Stem Cell Res Ther 2013; 4(1)(Suppl. 1): S2.
[42]
Mohammadi MH, Heidary Araghi B, Beydaghi V, et al. Skin diseases modeling using combined tissue engineering and microfluidic technologies. Adv Healthc Mater 2016; 5(19): 2459-80.
[43]
Song HJ, Lim HY, Chun W, Choi KC, Sung JH, Sung GY. Fabrication of a pumpless, microfluidic skin chip from different collagen sources. J Ind Eng Chem 2017; 56: 375-81.
[44]
Sung JH, Esch MB, Prot J-M, et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 2013; 13(7): 1201-12.
[45]
Wagner I, Materne E-M, Brincker S, et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 2013; 13(18): 3538-47.
[46]
van den Broek LJ, Bergers LIJC, Reijnders CMA, Gibbs S. Progress and future prospectives in skin-on-chip development with emphasis on the use of different cell types and technical challenges. Stem Cell Rev 2017; 13(3): 418-29.
[47]
Lee V, Singh G, Trasatti JP, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 2014; 20(6): 473-84.
[48]
Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016; 8(3): 032001.
[49]
Boyce ST. Design principles for composition and performance of cultured skin substitutes. Burns 2001; 27(5): 523-33.
[50]
Gauglitz GG, Schauber J. Skin: architecture and Function Dermal Replacements in General. Burn, and Plastic Surgery 2013; pp. 1-11.
[51]
Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering--in vivo and in vitro applications. Adv Drug Deliv Rev 2011; 63(4-5): 352-66.
[52]
Böttcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns 2010; 36(4): 450-60.
[53]
Dias JR, Granja PL, Bártolo PJ. Advances in electrospun skin substitutes. Prog Mater Sci 2016; 84: 314-34.
[54]
Yildirimer L, Thanh NTK, Seifalian AM. Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol 2012; 30(12): 638-48.
[55]
Schulz JT III, Tompkins RG, Burke JF. Artificial skin. Annu Rev Med 2000; 51: 231-44.
[56]
Planz V, Lehr C-M, Windbergs M. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J Control Release 2016; 242: 89-104.
[57]
Sorrell JM, Caterson B, Caplan AI, Davis B, Schafer IA. Human keratinocytes contain carbohydrates that are recognized by keratan sulfate-specific monoclonal antibodies. J Invest Dermatol 1990; 95(3): 347-52.
[58]
Schurer NY, Elias PM. The biochemistry and role of epidermal lipid synthesis. Adv Lipid Res 1991; 24: 27-56.
[59]
Kolarsick PAJ, Kolarsick MA, Goodwin C. Anatomy and physiology of the skin. J Dermatol Nurses Assoc 2011; 3(4): 203-13.
[60]
Chu DH. Development and structure of skin Fitzpatrick’s dermatology in general medicine. 7th ed. 2008; pp. 57-73.
[61]
Sala M, Diab R, Elaissari A, Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int J Pharm 2018; 535(1-2): 1-17.
[62]
Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochimica et Biophysica Acta (BBA) -. Biomembranes 2006; 1758(12): 2080-95.
[63]
Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature 2007; 445(7130): 843-50.
[64]
Choi H-I, Sohn K-C, Hong D-K, et al. Melanosome uptake is associated with the proliferation and differentiation of keratinocytes. Arch Dermatol Res 2014; 306(1): 59-66.
[65]
Costin G-E, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 2007; 21(4): 976-94.
[66]
Doebel T, Voisin B, Nagao K. Langerhans Cells - The Macrophage in Dendritic Cell Clothing. Trends Immunol 2017; 38(11): 817-28.
[67]
Singh D, Han SS. 3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering. Polymers (Basel) 2016; 8(1)
[68]
Woo S-H, Lumpkin EA, Patapoutian A. Merkel cells and neurons keep in touch. Trends Cell Biol 2015; 25(2): 74-81.
[69]
Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature 2007; 445(7130): 858-65.
[70]
Barthel R, Aberdam D. Epidermal stem cells. J Eur Acad Dermatol Venereol 2005; 19(4): 405-13.
[71]
Garrod D, Chidgey M. Desmosome structure, composition and function. Biochimica et Biophysica Acta (BBA) -. Biomembranes 2008; 1778(3): 572-87.
[72]
Ng WL, Wang S, Yeong WY, Naing MW. Skin bioprinting: impending reality or fantasy? Trends Biotechnol 2016; 34(9): 689-99.
[73]
McGrath JA, Eady RAJ, Pope FM. Anatomy and organization of human skin Rook’s textbook of dermatology 2004; 3: 1-15.
[74]
Lai-Cheong JE, McGrath JA. Structure and function of skin, hair and nails. Medicine (Baltimore) 2017; 45(6): 347-51.
[75]
Pereira RF, Barrias CC, Granja PL, Bartolo PJ. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine (Lond) 2013; 8(4): 603-21.
[76]
Kahan V, Andersen ML, Tomimori J, Tufik S. Stress, immunity and skin collagen integrity: evidence from animal models and clinical conditions. Brain Behav Immun 2009; 23(8): 1089-95.
[77]
Hsu C-K, Lin H-H, Harn HIC, Hughes MW, Tang M-J, Yang C-C. Mechanical forces in skin disorders. J Dermatol Sci 2018; 90(3): 232-40.
[78]
Casey G. Physiology of the skin Nursing Standard (through 2013) 2002; 16(34): 47.
[79]
Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol 2012; 4(3): 253-8.
[80]
Metcalfe AD, Ferguson MWJ. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 2007; 28(34): 5100-13.
[81]
Krishnaswamy G, Ajitawi O, Chi DS. The human mast cell Mast Cells 2006 13-34.
[82]
Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 2004; 9(1): 283-9.
[83]
Bolzinger M-A, Briançon S, Pelletier J, Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci 2012; 17(3): 156-65.
[84]
Kamble P, Sadarani B, Majumdar A, Bhullar S. Nanofiber based drug delivery systems for skin: A promising therapeutic approach. J Drug Deliv Sci Technol 2017; 41: 124-33.
[85]
Lane ME. Skin penetration enhancers. Int J Pharm 2013; 447(1-2): 12-21.
[86]
Alexander A, Dwivedi S. Ajazuddin , et al Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 2012; 164(1): 26-40.
[87]
Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: Theory and invitro experimental measurement. AIChE J 1975; 21(5): 985-96.
[88]
Riviere JE, Papich MG. Potential and problems of developing transdermal patches for veterinary applications. Adv Drug Deliv Rev 2001; 50(3): 175-203.
[89]
Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm Sci Technol Today 2000; 3(9): 318-26.
[90]
Ita K. Dissolving microneedles for transdermal drug delivery: Advances and challenges. Biomed Pharmacother 2017; 93: 1116-27.
[91]
Guy RH. Current status and future prospects of transdermal drug delivery. Pharm Res 1996; 13(12): 1765-9.
[92]
Münch S, Wohlrab J, Neubert RHH. Dermal and transdermal delivery of pharmaceutically relevant macromolecules. Eur J Pharm Biopharm 2017; 119: 235-42.
[93]
Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol 2008; 17(12): 1063-72.
[94]
Brandner JM, Proksch E. Epidermal barrier function: role of tight junctions Skin Barrier New York 2006 191-210.
[95]
Pummi K, Malminen M, Aho H, Karvonen S-L, Peltonen J, Peltonen S. Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes. J Invest Dermatol 2001; 117(5): 1050-8.
[96]
Bäsler K, Bergmann S, Heisig M, Naegel A, Zorn-Kruppa M, Brandner JM. The role of tight junctions in skin barrier function and dermal absorption. J Control Release 2016; 242: 105-18.
[97]
Elias PM, Matsuyoshi N, Wu H, et al. Desmoglein isoform distribution affects stratum corneum structure and function. J Cell Biol 2001; 153(2): 243-9.
[98]
Djalilian AR, McGaughey D, Patel S, et al. Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response. J Clin Invest 2006; 116(5): 1243-53.
[99]
Ekanayake-Mudiyanselage S, Aschauer H, Schmook FP, Jensen JM, Meingassner JG, Proksch E. Expression of epidermal keratins and the cornified envelope protein involucrin is influenced by permeability barrier disruption. J Invest Dermatol 1998; 111(3): 517-23.
[100]
Jensen J-M, Schütze S, Neumann C, Proksch E. Impaired Cutaneous Permeability Barrier Function, Skin Hydration, and Sphingomyelinase Activity in Keratin 10 Deficient Mice11Part of this study was presented at the 66th Annual Meeting of the Society for Investigative Dermatology (SID), April 23–27, 1997, Washington, DC. J Invest Dermatol 2000; 115(4): 708-13.
[101]
Cua AB, Wilhelm KP, Maibach HI. Frictional properties of human skin: relation to age, sex and anatomical region, stratum corneum hydration and transepidermal water loss. Br J Dermatol 1990; 123(4): 473-9.
[102]
Liuzzi R, Carciati A, Guido S, Caserta S. Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure? Colloids Surf B Biointerfaces 2016; 139: 294-305.
[103]
Hadgraft J. Skin deep. Eur J Pharm Biopharm 2004; 58(2): 291-9.
[104]
Moser K, Kriwet K, Naik A, Kalia YN, Guy RH. Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm 2001; 52(2): 103-12.
[105]
Illel B. Formulation for transfollicular drug administration: some recent advances Critical Reviews™ in Therapeutic Drug Carrier Systems 1997; 14(3).
[106]
Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012; 12(12): 2165-74.
[107]
Marx U, Walles H, Hoffmann S, et al. ‘Human-on-a-chip’ developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern Lab Anim 2012; 40(5): 235-57.
[108]
Maschmeyer I, Lorenz AK, Schimek K, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 2015; 15(12): 2688-99.
[109]
Sriram G, Alberti M, Dancik Y, Wu B, Wu R, Feng Z, et al. Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Mater Today 2017.
[110]
Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001; 294(5547): 1708-12.
[111]
Song HJ, Lim HY, Chun W, Choi KC, Lee TY, Sung JH, et al. Development of 3D skin-equivalent in a pump-less microfluidic chip. J Ind Eng Chem 2018; 60: 355-9.
[112]
Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 2007; 4(4): 359-65.
[113]
Reijnders CM, van Lier A, Roffel S, Kramer D, Scheper RJ, Gibbs S. Development of a full-thickness human skin equivalent in vitro model derived from TERT-immortalized keratinocytes and fibroblasts. Tissue Eng Part A 2015; 21(17-18): 2448-59.
[114]
Klicks J, von Molitor E, Ertongur-Fauth T, Rudolf R, Hafner M. In vitro skin three-dimensional models and their applications. Journal of Cellular Biotechnology 2017; 3(1): 21-39.
[115]
Alameda JP, Navarro M, Ramírez Á, et al. IKKα regulates the stratification and differentiation of the epidermis: implications for skin cancer development. Oncotarget 2016; 7(47): 76779-92.
[116]
Schoop VM, Mirancea N, Fusenig NE. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol 1999; 112(3): 343-53.
[117]
Smola H, Thiekötter G, Fusenig NE. Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J Cell Biol 1993; 122(2): 417-29.
[118]
Yu F, Selva Kumar NDO, Choudhury D, Foo LC, Ng SH. Microfluidic platforms for modeling biological barriers in the circulatory system. Drug Discov Today 2018; 23(4): 815-29.
[119]
Ghaemmaghami AM, Hancock MJ, Harrington H, Kaji H, Khademhosseini A. Biomimetic tissues on a chip for drug discovery. Drug Discov Today 2012; 17(3-4): 173-81.
[120]
Sung JH, Kam C, Shuler ML. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 2010; 10(4): 446-55.
[121]
Khalid N, Kobayashi I, Nakajima M. Recent lab-on-chip developments for novel drug discovery. Wiley Interdiscip Rev Syst Biol Med 2017; 9(4)
[122]
Lee S, Jin SP, Kim YK, Sung GY, Chung JH, Sung JH. Construction of 3D multicellular microfluidic chip for an in vitro skin model. Biomed Microdevices 2017; 19(2): 22.
[123]
Shin Y, Han S, Jeon JS, et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc 2012; 7(7): 1247-59.
[124]
van der Meer AD, Orlova VV, ten Dijke P, van den Berg A, Mummery CL. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip 2013; 13(18): 3562-8.
[125]
Schimek K, Busek M, Brincker S, et al. Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip 2013; 13(18): 3588-98.
[126]
Wufuer M, Lee G, Hur W, et al. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci Rep 2016; 6: 37471.
[127]
Tsai M, Kita A, Leach J, et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J Clin Invest 2012; 122(1): 408-18.
[128]
Bischel LL, Young EWK, Mader BR, Beebe DJ. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 2013; 34(5): 1471-7.
[129]
Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 2009; 30(8): 1587-95.
[130]
Hakimi N, Tsai SSH, Cheng CH, Hwang DK. One-step two-dimensional microfluidics-based synthesis of three-dimensional particles. Adv Mater 2014; 26(9): 1393-8.
[131]
Valencia PM, Pridgen EM, Rhee M, Langer R, Farokhzad OC, Karnik R. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 2013; 7(12): 10671-80.
[132]
Jahn A, Reiner JE, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M. Preparation of nanoparticles by continuous-flow microfluidics. J Nanopart Res 2008; 10(6): 925-34.
[133]
Fraikin J-L, Teesalu T, McKenney CM, Ruoslahti E, Cleland AN. A high-throughput label-free nanoparticle analyser. Nat Nanotechnol 2011; 6(5): 308-13.
[134]
Farokhzad OC, Khademhosseini A, Jon S, et al. Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal Chem 2005; 77(17): 5453-9.
[135]
Whitesides GM. The origins and the future of microfluidics. Nature 2006; 442(7101): 368-73.
[136]
Bernard A, Renault JP, Michel B, Bosshard HR, Delamarche E. Microcontact printing of proteins. Adv Mater 2000; 12(14): 1067-70.
[137]
Therriault D, White SR, Lewis JA. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2003; 2(4): 265-71.
[138]
Wang Z, Samanipour R, Koo K-i, Kim K. Organ-on-a-chip platforms for drug delivery and cell characterization: A review. Sens Mater 2015; 27(6): 487-506.
[139]
Sticker D, Rothbauer M, Lechner S, Hehenberger M-T, Ertl P. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. Lab Chip 2015; 15(24): 4542-54.
[140]
Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 2008; 14(1): 61-86.
[141]
Okugawa Y, Hirai Y. Extracellular epimorphin modulates epidermal differentiation signals mediated by epidermal growth factor receptor. J Dermatol Sci 2013; 69(3): 236-42.
[142]
Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials 1998; 39(2): 266-76.
[143]
Hosseinkhani H, Hiraoka Y, Li C-H, et al. Engineering three-dimensional collagen-IKVAV matrix to mimic neural microenvironment. ACS Chem Neurosci 2013; 4(8): 1229-35.
[144]
Zhao X, Lang Q, Yildirimer L, et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater 2016; 5(1): 108-18.
[145]
Hilmi AB, Halim AS, Hassan A, Lim CK, Noorsal K, Zainol I. In vitro characterization of a chitosan skin regenerating template as a scaffold for cells cultivation. Springerplus 2013; 2(1): 79.
[146]
Ma J, Wang H, He B, Chen J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 2001; 22(4): 331-6.
[147]
Fu LN, Xie JW, Carlson MA, Reilly DA. Three-dimensional nanofiber scaffolds with arrayed holes for engineering skin tissue constructs. MRS Commun 2017; 7(3): 361-6.
[148]
Min BM, Jeong L, Lee KY, Park WH. Regenerated silk fibroin nanofibers: water vapor-induced structural changes and their effects on the behavior of normal human cells. Macromol Biosci 2006; 6(4): 285-92.
[149]
Pan H, Jiang H, Chen W. Interaction of dermal fibroblasts with electrospun composite polymer scaffolds prepared from dextran and poly lactide-co-glycolide. Biomaterials 2006; 27(17): 3209-20.
[150]
Noh HK, Lee SW, Kim JM, et al. Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 2006; 27(21): 3934-44.
[151]
Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication 2016; 9(1): 015006.
[152]
Ng WL, Yeong WY, Naing MW. Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. International Journal of Bioprinting 2016; 2(1): 53-62.
[153]
Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013; 65(4): 457-70.
[154]
Gu BK, Park SJ, Kim MS, Kang CM, Kim JI, Kim CH. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr Polym 2013; 97(1): 65-73.
[155]
Kurpinski KT, Stephenson JT, Janairo RRR, Lee H, Li S. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials 2010; 31(13): 3536-42.
[156]
Benam KH, Villenave R, Lucchesi C, et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 2016; 13(2): 151-7.
[157]
Deosarkar SP, Prabhakarpandian B, Wang B, Sheffield JB, Krynska B, Kiani MF. A novel dynamic neonatal blood-brain barrier on a chip. PLoS One 2015; 10(11): e0142725.
[158]
Sunkara V, Park D-K, Hwang H, Chantiwas R, Soper SA, Cho Y-K. Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane). Lab Chip 2011; 11(5): 962-5.
[159]
Mori N, Morimoto Y, Takeuchi S. Skin integrated with perfusable vascular channels on a chip. Biomaterials 2017; 116: 48-56.
[160]
Alexander FA, Eggert S, Wiest J. Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid Interface. Genes (Basel) 2018; 9(2): E114.
[161]
Arpaia P, Cesaro U, Moccaldi N. Noninvasive measurement of transdermal drug delivery by impedance spectroscopy. Sci Rep 2017; 7: 44647.
[162]
Groeber F, Engelhardt L, Egger S, et al. Impedance spectroscopy for the non-destructive evaluation of in vitro epidermal models. Pharm Res 2015; 32(5): 1845-54.
[163]
Björklund S, Ruzgas T, Nowacka A, et al. Skin membrane electrical impedance properties under the influence of a varying water gradient. Biophys J 2013; 104(12): 2639-50.
[164]
Newbold C, Richardson R, Huang CQ, Milojevic D, Cowan R, Shepherd R. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants. J Neural Eng 2004; 1(4): 218-27.
[165]
Linderholm P, Braschler T, Vannod J, Barrandon Y, Brouard M, Renaud P. Two-dimensional impedance imaging of cell migration and epithelial stratification. Lab Chip 2006; 6(9): 1155-62.
[166]
Geraili A, Jafari P, Hassani MS, Araghi BH, Mohammadi MH, Ghafari AM, et al. Controlling Differentiation of Stem Cells for Developing Personalized Organ‐on‐Chip Platforms. Adv Healthc Mater 2017.
[167]
Netzlaff F, Lehr C-M, Wertz PW, Schaefer UF. The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 2005; 60(2): 167-78.
[168]
Ackermann K, Borgia SL, Korting HC, Mewes KR, Schäfer-Korting M. The Phenion full-thickness skin model for percutaneous absorption testing. Skin Pharmacol Physiol 2010; 23(2): 105-12.
[169]
Topol BM, Haimes HB, Dubertret L, Bell E. Transfer of melanosomes in a skin equivalent model in vitro. J Invest Dermatol 1986; 87(5): 642-7.
[170]
Vaughan MB, Ramirez RD, Andrews CM, Wright WE, Shay JW. H-ras expression in immortalized keratinocytes produces an invasive epithelium in cultured skin equivalents. PLoS One 2009; 4(11): e7908.
[171]
Groeber F, Engelhardt L, Lange J, et al. A first vascularized skin equivalent as an alternative to animal experimentation. ALTEX 2016; 33(4): 415-22.
[172]
Marionnet C, Duval C, Bernerd F. New Insights in Photoaging Process Revealed by In Vitro. Reconstructed Skin Models. Textbook of Aging Skin 2014; pp. 1-25.
[173]
Byun JW, Park IS, Choi GS, Shin J. Role of fibroblast-derived factors in the pathogenesis of melasma. Clin Exp Dermatol 2016; 41(6): 601-9.
[174]
Poumay Y, Dupont F, Marcoux S, Leclercq-Smekens M, Hérin M, Coquette A. A simple reconstructed human epidermis: preparation of the culture model and utilization in in vitro studies. Arch Dermatol Res 2004; 296(5): 203-11.
[175]
Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 2007; 127(5): 998-1008.
[176]
Schumacher M, Schuster C, Rogon ZM, et al. Efficient keratinocyte differentiation strictly depends on JNK-induced soluble factors in fibroblasts. J Invest Dermatol 2014; 134(5): 1332-41.
[177]
Catarino CM, do Nascimento Pedrosa T, Pennacchi PC, et al. Skin corrosion test: a comparison between reconstructed human epidermis and full thickness skin models. Eur J Pharm Biopharm 2018; 125: 51-7.
[178]
Shepherd BR, Enis DR, Wang F, Suarez Y, Pober JS, Schechner JS. Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J 2006; 20(10): 1739-41.
[179]
Supp DM, Wilson-Landy K, Boyce ST. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J 2002; 16(8): 797-804.
[180]
Abaci HE, Guo Z, Coffman A, et al. Human Skin Constructs with Spatially Controlled Vasculature Using Primary and iPSC-Derived Endothelial Cells. Adv Healthc Mater 2016; 5(14): 1800-7.
[181]
Bessou S, Surlève-Bazeille JE, Pain C, Donatien P, Taïeb A. Ex vivo study of skin phototypes. J Invest Dermatol 1996; 107(5): 684-8.
[182]
MacNeil S. Progress and opportunities for tissue-engineered skin. Nature 2007; 445(7130): 874-80.
[183]
Duval C, Chagnoleau C, Pouradier F, Sextius P, Condom E, Bernerd F. Human skin model containing melanocytes: essential role of keratinocyte growth factor for constitutive pigmentation-functional response to α-melanocyte stimulating hormone and forskolin. Tissue Eng Part C Methods 2012; 18(12): 947-57.
[184]
Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 2008; 26(10): 2713-23.
[185]
Bellas E, Seiberg M, Garlick J, Kaplan DL. In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol Biosci 2012; 12(12): 1627-36.
[186]
Monfort A, Soriano-Navarro M, García-Verdugo JM, Izeta A. Production of human tissue-engineered skin trilayer on a plasma-based hypodermis. J Tissue Eng Regen Med 2013; 7(6): 479-90.
[187]
Kosten IJ, Spiekstra SW, de Gruijl TD, Gibbs S. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol Appl Pharmacol 2015; 287(1): 35-42.
[188]
Ouwehand K, Spiekstra SW, Waaijman T, Scheper RJ, de Gruijl TD, Gibbs S. Technical advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. J Leukoc Biol 2011; 90(5): 1027-33.
[189]
Chau DY, Johnson C, MacNeil S, Haycock JW, Ghaemmaghami AM. The development of a 3D immunocompetent model of human skin. Biofabrication 2013; 5(3): 035011.
[190]
van den Bogaard EH, Tjabringa GS, Joosten I, et al. Crosstalk between keratinocytes and T cells in a 3D microenvironment: a model to study inflammatory skin diseases. J Invest Dermatol 2014; 134(3): 719-27.
[191]
Maschmeyer I, Hasenberg T, Jaenicke A, Lindner M, Lorenz AK, Zech J, et al. Chip-based human liver-intestine and liver-skin co-culture 2015.
[192]
Ramadan Q, Ting FCW. In vitro micro-physiological immune-competent model of the human skin. Lab Chip 2016; 16(10): 1899-908.
[193]
Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 1995; 108(Pt 6): 2369-79.
[194]
Dhanwada KR, Garrett L, Smith P, Thompson KD, Doster A, Jones C. Characterization of human keratinocytes transformed by high risk human papillomavirus types 16 or 18 and herpes simplex virus type 2. J Gen Virol 1993; 74(Pt 6): 955-63.
[195]
Metallo CM, Azarin SM, Moses LE, Ji L, de Pablo JJ, Palecek SP. Human embryonic stem cell-derived keratinocytes exhibit an epidermal transcription program and undergo epithelial morphogenesis in engineered tissue constructs. Tissue Eng Part A 2010; 16(1): 213-23.
[196]
Okugawa Y, Hirai Y. Overexpression of extracellular epimorphin leads to impaired epidermal differentiation in HaCaT keratinocytes. J Invest Dermatol 2008; 128(8): 1884-93.
[197]
Takahashi K, Yamanaka S. cell. 2006; 126(4): 663-76. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors 2006; 126(4): 663-76.
[198]
Ramadan Q, Gijs MA. In vitro micro-physiological models for translational immunology. Lab Chip 2015; 15(3): 614-36.
[199]
Schimek K, Markhoff A, Sonntag F, Blechert M, Lauster R, Marx U. Integrating skin and vasculature in a Multi-Organ-Chip Platform BMC proceedings 2015.
[200]
Elbrecht DH, Long CJ, Hickman JJ. Transepithelial/endothelial Electrical Resistance (TEER) theory and ap-plications for microfluidic body-on-a-chip devices 2016; 1(1): 1.
[201]
Meyvantsson I, Beebe DJ. Cell culture models in microfluidic systems. Annu Rev Anal Chem (Palo Alto, Calif) 2008; 1: 423-49.
[202]
Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation Science translational medicine 2014; 6(265): 265sr6-sr6. 2014; 6(265): 265sr6-sr6.
[203]
Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science 2014; 346(6212): 941-5.
[204]
Richmond NA, Maderal AD, Vivas AC. Evidence-based management of common chronic lower extremity ulcers. Dermatol Ther (Heidelb) 2013; 26(3): 187-96.
[205]
Rice JB, Desai U, Cummings AKG, Birnbaum HG, Skornicki M, Parsons NB. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care 2014; 37(3): 651-8.
[206]
Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005; 366(9498): 1736-43.
[207]
Carrier P, Deschambeault A, Talbot M, et al. Characterization of wound reepithelialization using a new human tissue-engineered corneal wound healing model. Invest Ophthalmol Vis Sci 2008; 49(4): 1376-85.
[208]
Welss T, Basketter DA, Schröder KR. In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol In Vitro 2004; 18(3): 231-43.
[209]
Corsini E, Galli CL. Cytokines and irritant contact dermatitis. Toxicol Lett 1998; 102-103: 277-82.
[210]
Goh CL, Soh SD. Occupational dermatoses in Singapore. Contact Dermat 1984; 11(5): 288-93.
[211]
Harvell J, Lamminstausta K, Maibach H. Irritant contact dermatitis 1995 7-18.
[212]
Perkins MA, Osborne R, Rana FR, Ghassemi A, Robinson MK. Comparison of in vitro and in vivo human skin responses to consumer products and ingredients with a range of irritancy potential. Toxicological sciences: an official journal of the Society of Toxicology 1999; 48(2): 218-29.
[213]
Ponec M. In vitro cultured human skin cells as alternatives to animals for skin irritancy screening. Int J Cosmet Sci 1992; 14(6): 245-64.
[214]
Thyssen JP, Linneberg A, Menné T, Johansen JD. The epidemiology of contact allergy in the general population--prevalence and main findings. Contact Dermat 2007; 57(5): 287-99.
[215]
Frosch PJ. Cutaneous irritation Textbook of contact dermatitis 1995 28-61.
[216]
Beltrani VS, Bernstein IL, Cohen DE, Fonacier L. Contact dermatitis: a practice parameter. Ann Allergy Asthma Immunol 2006; 97(3)(Suppl. 2): S1-S38.
[217]
Cibulas W, Mumtaz M, Wind ML, Aitken S, Gupta KC, Bittner P, et al. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM).
[218]
Gerberick GF, Ryan CA, Kimber I, Dearman RJ, Lea LJ, Basketter DA. Local lymph node assay: validation assessment for regulatory purposes. Am J Contact Dermat 2000; 11(1): 3-18.
[219]
Magnusson B, Kligman AM. The identification of contact allergens by animal assay. The guinea pig maximization test. J Invest Dermatol 1969; 52(3): 268-76.
[220]
Python F, Goebel C, Aeby P. Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol 2007; 220(2): 113-24.
[221]
Lammers G, Roth G, Heck M, et al. Construction of a microstructured collagen membrane mimicking the papillary dermis architecture and guiding keratinocyte morphology and gene expression. Macromol Biosci 2012; 12(5): 675-91.
[222]
Michel M, L’Heureux N, Pouliot R, Xu W, Auger FA, Germain L. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim 1999; 35(6): 318-26.
[223]
Clement AL, Moutinho TJ Jr, Pins GD. Micropatterned dermal-epidermal regeneration matrices create functional niches that enhance epidermal morphogenesis. Acta Biomater 2013; 9(12): 9474-84.
[224]
Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg 2002; 55(3): 185-93.
[225]
Scuderi N, Onesti MG, Bistoni G, et al. The clinical application of autologous bioengineered skin based on a hyaluronic acid scaffold. Biomaterials 2008; 29(11): 1620-9.
[226]
Hoffmann J, Heisler E, Karpinski S, et al. Epidermal-skin-test 1, 000 (EST-1, 000)--a new reconstructed epidermis for in vitro skin corrosivity testing. Toxicol In Vitro 2005; 19(7): 925-9.
[227]
Gordon S, Daneshian M, Bouwstra J, et al. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX 2015; 32(4): 327-78.
[228]
Boucard N, Viton C, Agay D, et al. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 2007; 28(24): 3478-88.
[229]
Schneider J, Biedermann T, Widmer D, et al. Matriderm versus Integra: a comparative experimental study. Burns 2009; 35(1): 51-7.
[230]
Vig K, Chaudhari A, Tripathi S, et al. Advances in Skin Regeneration Using Tissue Engineering. Int J Mol Sci 2017; 18(4): E789.
[231]
Schurr MJ, Straseski JA, Faucher LD, Foster KN, Centanni JM, Comer AR, et al. Stratagraft (R) skin substitute is well-tolerated and does not induce strong allogeneic immune responses in a phase I/II clinical evaluation of traumatic wounds. Wound Repair and Regeneration 2009; 17(2): A19.
[232]
Allen-Hoffmann BL, Rooney PJ. Current Innovations for the Treatment of Chronic Wounds 2016 265.
[233]
Boyce ST, Warden GD. Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 2002; 183(4): 445-56.
[234]
Böttcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns 2010; 36(4): 450-60.
[235]
Kamel RA, Ong JF, Eriksson E, Junker JPE, Caterson EJ. Tissue engineering of skin. J Am Coll Surg 2013; 217(3): 533-55.
[236]
MacNeil S. Biomaterials for tissue engineering of skin. Mater Today 2008; 11(5): 26-35.
[237]
Mansbridge JN. Tissue-engineered skin substitutes in regenerative medicine. Curr Opin Biotechnol 2009; 20(5): 563-7.
[238]
Bergers LIJC, Reijnders CMA, van den Broek LJ, et al. Immune-competent human skin disease models. Drug Discov Today 2016; 21(9): 1479-88.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy