Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter Article

Soybean Peptide QRPR Activates Autophagy and Attenuates the Inflammatory Response in the RAW264.7 Cell Model

Author(s): Fengguang Pan*, Lin Wang, Zhuanzhang Cai, Yinan Wang, Yanfei Wang, Jiaxin Guo, Xiangyu Xu and Xiaoge Zhang

Volume 26, Issue 4, 2019

Page: [301 - 312] Pages: 12

DOI: 10.2174/0929866526666190124150555

Price: $65

Abstract

Background: There are few studies on the autophagy and inflammatory effects of soy peptides on the inflammatory cell model. Further insight into the underlying relationship of soybean peptides and autophagy needs to be addressed. Therefore, it is worthwhile investigating the possible mechanisms of soybean peptides, especially autophagy and the inflammatory effects.

Objective: In this study, we used a RAW264.7 cell inflammation model to study the inhibitory effect and mechanism of soybean peptide QRPR on inflammation.

Methods: We used LPS-induced inflammation model in RAW264.7 cells to study the inhibitory effect and mechanism of soybean peptide QRPR on inflammation. First, Cell viability was determined by cell activity assay. Subsequently, the concentrations of the inflammatory cytokines IL-6 and TNF-α were measured by ELISA. IL-6, TNF-α, Beclin1, LC3, P62, PIK3, AKT, p-AKT, pmTOR and mTOR protein expression were detected by western-blot. PIK3, AKT and mTOR gene expression level were quantified by quantitative real-time PCR. Double-membrane structures of autophagosomes and autolysosomes were observed by transmission electron microscopy. The PI3K/AKT/mTOR signaling pathway in LPS-induced RAW264.7 cells was speculated when the autophagy was activated.

Results: The results showed that QRPR activates autophagy in the inflammatory cell model and that the inhibitory effect of QRPR on inflammation is reduced after autophagy was inhibited. Western- blot and real-time PCR results indicated that QRPR activates autophagy in LPS-induced RAW264.7 cells by modulating the PI3K/AKT/mTOR signaling pathway, and it shows a significant time dependence.

Conclusion: This study indicated that the soybean peptide QRPR activates autophagy and attenuates the inflammatory response in the LPS-induced RAW264.7 cell model.

Keywords: RAW264.7 cells, PI3K/AKT/mTOR, inflammation, autophagy, soybean peptides, IL-6, TNF-α

« Previous
Graphical Abstract
[1]
Barton, G.M. A calculated response: Control of inflammation by the innate immune system. J. Clin. Invest., 2008, 118(2), 413-420.
[2]
Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[3]
Tanaka, Y.; Kume, S.; Kitada, M.; Kanasaki, K.; Uzu, T.; Maegawa, H.; Koya, D. Autophagy as a therapeutic target in diabetic nephropathy. Exp. Diabetes Res., 2012, 2012, 628978.
[4]
White, E.; Karp, C.; Strohecker, A.M.; Guo, Y.X.; Mathew, R. Role of autophagy in suppression of inflammation and cancer. Curr. Opin. Cell Biol., 2010, 22(2), 212-217.
[5]
Hernandez-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun., 2009, 390(3), 803-808.
[6]
Levine, B.; Mizushima, N.; Virgin, H.W. Autophagy in immunity and inflammation. Nature, 2011, 469(7330), 323-335.
[7]
Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, 13(6), 397-411.
[8]
Vernaza, M.G.; Dia, V.P.; de Mejia, E.G.; Chang, Y.K. Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chem., 2012, 134(4), 2217-2225.
[9]
Zhao, F. Yu, Y.H.; Liu, W.; Zhang, J.; Liu, X.Q.; Liu, L.Y.; Yin, H.N. Small molecular weight soybean protein-derived peptides nutriment attenuates rat burn injury-induced muscle atrophy by modulation of ubiquitin-proteasome system and autophagy signaling pathway. J. Agric. Food Chem., 2018, 66(11), 2724-2734.
[10]
Bradfute, S.B.; Castillo, E.F.; Arko-Mensah, J.; Chauhan, S.; Jiang, S.; Mandell, M.; Deretic, V. Autophagy as an immune effector against tuberculosis. Curr. Opin. Microbiol., 2013, 16(3), 355-365.
[11]
Shi, C.S.; Shenderov, K.; Huang, N.N.; Kabat, J.; Abu-Asab, M.; Fitzgerald, K.A.; Sher, A.; Kehrl, J.H. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol., 2012, 13(3), 255-263.
[12]
Dupont, N.; Jiang, S.; Pilli, M.; Ornatowski, W.; Bhattacharya, D.; Deretic, V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J., 2011, 30(23), 4701-4711.
[13]
Saitoh, T.; Fujita, N.; Jang, M.H.; Uematsu, S.; Yang, B.G.; Satoh, T.; Omori, H.; Noda, T.; Yamamoto, N.; Komatsu, M.; Tanaka, K.; Kawai, T.; Tsujimura, T.; Takeuchi, O.; Yoshimori, T.; Akira, S. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature, 2008, 456(7219), 264-268.
[14]
Deretic, V.; Saitoh, T.; Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol., 2013, 13(10), 722-737.
[15]
Backer, J.M. The regulation and function of Class III PI3Ks: Novel roles for Vps34. Biochem. J., 2008, 410, 1-17.
[16]
Aita, V.M.; Liang, X.H.; Murty, V.V.V.S.; Pincus, D.L.; Yu, W.P.; Cayanis, E.; Kalachikov, S.; Gilliam, T.C.; Levine, B. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 1999, 59(1), 59-65.
[17]
Hands, S.L.; Proud, C.G.; Wyttenbach, A. mTOR’s role in ageing: Protein synthesis or autophagy? Aging-Us, 2009, 1(7), 586-597.
[18]
Korolchuk, V.I.; Saiki, S.; Lichtenberg, M.; Siddiqi, F.H.; Roberts, E.A.; Imarisio, S.; Jahreiss, L.; Sarkar, S.; Futter, M.; Menzies, F.M.; O’Kane, C.J.; Deretic, V.; Rubinsztein, D.C. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol., 2011, 13(4), 453-U242.
[19]
Rodon, J.; Dienstmann, R.; Serra, V.; Tabemero, J. Development of PI3K inhibitors: Lessons learned from early clinical trials. Nat. Rev. Clin. Oncol., 2013, 10(3), 143-153.
[20]
Russell, R.C.; Yuan, H.X.; Guan, K.L. Autophagy regulation by nutrient signaling. Cell Res., 2014, 24(1), 42-57.
[21]
Zhou, Z.W.; Li, X.X.; He, Z.X.; Pan, S.T.; Yang, Y.; Zhang, X.; Chow, K.; Yang, T.; Qiu, J.X.; Zhou, Q.; Tan, J.; Wang, D.; Zhou, S.F. Induction of apoptosis and autophagy via sirtuin1- and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells. Drug Des. Devel. Ther., 2015, 9, 1511-1554.
[22]
Saiki, S.; Sasazawa, Y.; Imamichi, Y.; Kawajiri, S.; Fujimaki, T.; Tanida, I.; Kobayashi, H.; Sato, F.; Sato, S.; Ishikawa, K.I.; Imoto, M.; Hattori, N. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy, 2011, 7(2), 176-187.
[23]
Heras-Sandoval, D.; Perez-Rojas, J.M.; Hernandez-Damian, J.; Pedraza-Chaverri, J. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell. Signal., 2014, 26(12), 2694-2701.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy