Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Synthesis, Biological Activity and Medicinal Applications of Ruthenium Complexes Containing Carbohydrate Ligands

Author(s): Ana Cristina Fernandes*

Volume 26, Issue 35, 2019

Page: [6412 - 6437] Pages: 26

DOI: 10.2174/0929867326666190124124350

Price: $65

Abstract

The search for new metal-efficient drugs has attracted considerable attention of the scientific community. Among them, ruthenium complexes have emerged as an excellent alternative of platinum complexes. This review presents a thorough and timely coverage of the synthesis, biological activity and medicinal applications of ruthenium complexes bearing carbohydrate ligands, allowing a large community of readers, in particularly the community that works in organic, inorganic, bioorganometallic and medicinal chemistry, ready access to the most relevant examples.

Keywords: Ruthenium, carbohydrates, nucleolipidic complexes, polypyridyl complexes, arene complexes, cyclopentadienyl complexes, tricarbonyl complexes.

[1]
Dyson, P.J.; Sava, G. Metal-based antitumour drugs in the post genomic era. Dalton Trans., 2006, (16), 1929-1933.
[http://dx.doi.org/10.1039/b601840h] [PMID: 16609762]
[2]
Hartinger, C.G.; Dyson, P.J. Bioorganometallic chemistry-from teaching paradigms to medicinal applications. Chem. Soc. Rev., 2009, 38, 391-401.
[http://dx.doi.org/10.1039/B707077M]
[3]
Gasser, G.; Ott, I. Metzler-Nolte. N. Organometallic anticancer compounds. J. Med. Chem., 2011, 54, 3-25.
[http://dx.doi.org/10.1021/jm100020w]
[4]
Monney, A.; Albrecht, M. Transition metal bioconjugates with an organometallic link between the metal and the biomolecular scaffold. Coord. Chem. Rev., 2013, 257, 2420-2433.
[http://dx.doi.org/10.1016/j.ccr.2012.12.015]
[5]
Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble metals in medicine: latest advances. Coord. Chem. Rev., 2015, 284, 329-350.
[http://dx.doi.org/10.1016/j.ccr.2014.08.002]
[6]
Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 1965, 205, 698-699.
[http://dx.doi.org/10.1038/205698a0] [PMID: 14287410]
[7]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: a new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[8]
Abu-Surrah, A.S.; Kettunen, M. Platinum group antitumor chemistry: Design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem., 2006, 13(11), 1337-1357.
[http://dx.doi.org/10.2174/092986706776872970] [PMID: 16712474]
[9]
Kostova, I. Platinum complexes as anticancer agents. Recent Patents Anticancer Drug Discov., 2006, 1, 1-22.
[http://dx.doi.org/10.2174/157489206775246458]
[10]
Mitra, K. Platinum complexes as light promoted anticancer agents: a redefined strategy for controlled activation. Dalton Trans., 2016, 45(48), 19157-19171.
[http://dx.doi.org/10.1039/C6DT03665A] [PMID: 27883129]
[11]
Clarke, M. Ruthenium metallopharmaceuticals. J. Coord. Chem. Rev., 2003, 236, 209-233.
[http://dx.doi.org/10.1016/S0010-8545(02)00312-0]
[12]
Ang, W.H.; Dyson, P.J. Classical and non‐classical ruthenium‐based anticancer drugs: Towards targeted chemotherapy. Eur. J. Inorg. Chem., 2006, 4003-4018.
[http://dx.doi.org/10.1002/ejic.200600723]
[13]
Bergamo, A.; Sava, G. Ruthenium complexes can target determinants of tumour malignancy. Dalton Trans., 2007, (13), 1267-1272.
[http://dx.doi.org/10.1039/b617769g] [PMID: 17372640]
[14]
Levina, A.; Mitra, A.; Lay, P.A. Recent developments in ruthenium anticancer drugs. Metallomics, 2009, 1(6), 458-470.
[http://dx.doi.org/10.1039/b904071d] [PMID: 21305154]
[15]
Bergamo, A.; Sava, G. Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans., 2011, 40(31), 7817-7823.
[http://dx.doi.org/10.1039/c0dt01816c] [PMID: 21629963]
[16]
Bergamo, A.; Gaiddon, C.; Schellens, J.H.; Beijnen, J.H.; Sava, G. Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J. Inorg. Biochem., 2012, 106(1), 90-99.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.09.030] [PMID: 22112845]
[17]
Nazarov, A.A.; Hartinger, C.G.; Dyson, P.J. Opening the lid on piano-stool complexes: an account of ruthenium(II)–arene complexes with medicinal applications. J. Organomet. Chem., 2014, 751, 251-260.
[http://dx.doi.org/10.1016/j.jorganchem.2013.09.016]
[18]
Motswainyana, W. M.; Ajibade, P. A. Anticancer activities of mononuclear ruthenium(II) coordination complexes. Adv. Chem, 2015. Article ID 859730.
[http://dx.doi.org/10.1155/2015/859730]
[19]
Zeng, L.; Gupta, P.; Chen, Y.; Wang, E.; Ji, L.; Chao, H.; Chen, Z-S. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem. Soc. Rev., 2017, 46(19), 5771-5804.
[http://dx.doi.org/10.1039/C7CS00195A] [PMID: 28654103]
[20]
Clarke, M. J. Oncological implications of the chemistry of ruthenium. Met. Ions Biol. Syst., 1980, 11, 231-283.
[21]
Mestroni, G.; Alessio, E.; Sava, G.; Pacor, S.; Coluccia, M.; Boccarelli, A. Water-soluble ruthenium(iii)-dimethyl sulfoxide complexes: chemical behaviour and pharmaceutical properties. Met. Based Drugs, 1994, 1(1), 41-63.
[http://dx.doi.org/10.1155/MBD.1994.41] [PMID: 18476216]
[22]
Sava, G.; Capozzi, I.; Clerici, K.; Gagliardi, G.; Alessio, E.; Mestroni, G. Pharmacological control of lung metastases of solid tumours by a novel ruthenium complex. Clin. Exp. Metastasis, 1998, 16(4), 371-379.
[http://dx.doi.org/10.1023/A:1006521715400] [PMID: 9626816]
[23]
Rademaker-Lakhai, J.M.; van den Bongard, D.; Pluim, D.; Beijnen, J.H.; Schellens, J.H.M. A Phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin. Cancer Res., 2004, 10(11), 3717-3727.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0746] [PMID: 15173078]
[24]
Pacor, S.; Zorzet, S.; Cocchietto, M.; Bacac, M.; Vadori, M.; Turrin, C.; Gava, B.; Castellarin, A.; Sava, G. Intratumoral NAMI-A treatment triggers metastasis reduction, which correlates to CD44 regulation and tumor infiltrating lymphocyte recruitment. J. Pharmacol. Exp. Ther., 2004, 310(2), 737-744.
[http://dx.doi.org/10.1124/jpet.104.066175] [PMID: 15075381]
[25]
Leijen, S.; Burgers, S.A.; Baas, P.; Pluim, D.; Tibben, M.; van Werkhoven, E.; Alessio, E.; Sava, G.; Beijnen, J.H.; Schellens, J.H.M. Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Invest. New Drugs, 2015, 33(1), 201-214.
[http://dx.doi.org/10.1007/s10637-014-0179-1] [PMID: 25344453]
[26]
Alessio, E. Thirty years of the drug candidate NAMI‐A and the myths in the field of ruthenium anticancer compounds: a personal perspective. Eur. J. Inorg. Chem., 2017, 12, 1549-1560.
[http://dx.doi.org/10.1002/ejic.201600986]
[27]
Hartinger, C.G.; Jakupec, M.A.; Zorbas-Seifried, S.; Groessl, M.; Egger, A.; Berger, W.; Zorbas, H.; Dyson, P.J.; Keppler, B.K. KP1019, a new redox-active anticancer agent--preclinical development and results of a clinical phase I study in tumor patients. Chem. Biodivers., 2008, 5(10), 2140-2155.
[http://dx.doi.org/10.1002/cbdv.200890195] [PMID: 18972504]
[28]
Lentz, F.; Drescher, A.; Lindauer, A.; Henke, M.; Hilger, R.A.; Hartinger, C.G.; Scheulen, M.E.; Dittrich, C.; Keppler, B.K.; Jaehde, U. Pharmacokinetics of a novel anticancer ruthenium complex (KP1019, FFC14A) in a phase I dose-escalation study. Anticancer Drugs, 2009, 20(2), 97-103.
[http://dx.doi.org/10.1097/CAD.0b013e328322fbc5] [PMID: 19209025]
[29]
Hartinger, C.G.; Zorbas-Seifried, S.; Jakupec, M.A.; Kynast, B.; Zorbas, H.; Bernhard, K.; Keppler, B.K. From bench to bedside – preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). J. Inorg. Biochem., 2006, 100(5-6), 891-904.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.02.013] [PMID: 16603249]
[30]
Heffeter, P.; Riabtseva, A.; Senkiv, Y.; Kowol, C.R.; Körner, W.; Jungwith, U.; Mitina, N.; Keppler, B.K.; Konstantinova, T.; Yanchuk, I.; Stoika, R.; Zaichenko, A.; Berger, W. Nanoformulation improves activity of the (pre) clinical anticancer ruthenium complex KP1019. J. Biomed. Nanotechnol., 2014, 10(5), 877-884.
[http://dx.doi.org/10.1166/jbn.2014.1763] [PMID: 24734541]
[31]
Trondl, R.; Heffeter, P.; Kowol, C.R.; Jakupec, M.A.; Bergerbd, W.; Keppler, B.K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. (Camb.), 2014, 5(8), 2925-2932.
[http://dx.doi.org/10.1039/C3SC53243G]
[32]
Bytzek, A.K.; Koellensperger, G.; Keppler, B.K.G.; Hartinger, C. Biodistribution of the novel anticancer drug sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] KP-1339/IT139 in nude BALB/c mice and implications on its mode of action. J. Inorg. Biochem., 2016, 160, 250-255.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.037] [PMID: 26993078]
[33]
Storr, T.; Obata, M.; Fisher, C.L.; Bayly, S.R.; Green, D.E. BrudziÇska, I.; Mikata, Y.; Patrick, B. O.; Adam, M. J.; Yano, S.; Orvig, C. Novel carbohydrate‐appended metal complexes for potential use in molecular imaging. Chemistry, 2005, 11(11), 195-203.
[http://dx.doi.org/10.1002/chem.200400719] [PMID: 15540259]
[34]
Hartinger, C.G.; Nazarov, A.A.; Ashraf, S.M.; Dyson, P.J.; Keppler, B.K. Carbohydrate-metal complexes and their potential as anticancer agents. Curr. Med. Chem., 2008, 15(25), 2574-2591.
[http://dx.doi.org/10.2174/092986708785908978] [PMID: 18855680]
[35]
Gottschaldt, M.; Schubert, U.S. Prospects of metal complexes peripherally substituted with sugars in biomedicinal applications. Chemistry, 2009, 15(7), 1548-1557.
[http://dx.doi.org/10.1002/chem.200802013] [PMID: 19130511]
[36]
Gasser, G.; Ott, I. Metzler-Nolte. Organometallic anticancer compounds. N. J. Med. Chem., 2011, 54, 3-25.
[http://dx.doi.org/10.1021/jm100020w]
[37]
Morais, G.R.; Falconer, R.A.; Santos, I. Carbohydrate‐based molecules for molecular imaging in nuclear medicine. Eur. J. Org. Chem., 2013, 1401-1414.
[http://dx.doi.org/10.1002/ejoc.201201457]
[38]
Pettenuzzo, A.; Pigot, R.; Ronconi, L. Metal-based glycoconjugates and their potential in targeted anticancer chemotherapy. Metallodrugs, 2015, 1(1), 36-61.
[39]
Webb, M.I.; Chard, R.A.; Al-Jobory, Y.M.; Jones, M.R.; Wong, E.W.Y.; Walsby, C.J. Pyridine analogues of the antimetastatic Ru(III) complex NAMI-A targeting non-covalent interactions with albumin. Inorg. Chem., 2012, 51(2), 954-966.
[http://dx.doi.org/10.1021/ic202029e] [PMID: 22224431]
[40]
Vaccaro, M.; Del Litto, R.; Mangiapia, G.; Carnerup, A.M.; D’Errico, G.; Ruffo, F.; Paduano, L. Lipid based nanovectors containing ruthenium complexes: a potential route in cancer therapy. Chem. Commun. (Camb.), 2009, (11), 1404-1406.
[http://dx.doi.org/10.1039/b820368g] [PMID: 19259602]
[41]
Mangiapia, G.; D’Errico, G.; Simeone, L.; Irace, C.; Radulescu, A.; Di Pascale, A.; Colonna, A.; Montesarchio, D.; Paduano, L. Ruthenium-based complex nanocarriers for cancer therapy. Biomaterials, 2012, 33(14), 3770-3782.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.057] [PMID: 22357152]
[42]
Simeone, L.; Mangiapia, G.; Vitiello, G.; Irace, C.; Colonna, A.; Ortona, O.; Montesarchio, D.; Paduano, L. Cholesterol-based nucleolipid-ruthenium complex stabilized by lipid aggregates for antineoplastic therapy. Bioconjug. Chem., 2012, 23, 758-770.
[http://dx.doi.org/10.1021/bc200565v] [PMID: 22369596]
[43]
Simeone, L.; Mangiapia, G.; Irace, C.; Di Pascale, A.; Colonna, A.; Ortona, O.; De Napoli, L.; Montesarchio, D.; Paduano, L. Nucleolipid nanovectors as molecular carriers for potential applications in drug delivery. Mol. Biosyst., 2011, 7(11), 3075-3086.
[http://dx.doi.org/10.1039/c1mb05143a] [PMID: 21897988]
[44]
Tan, C.; Wu, S.; Lai, S.; Wang, M.; Chen, Y.; Zhou, L.; Zhu, Y.; Lian, W.; Peng, W.; Ji, L.; Xu, A. Synthesis, structures, cellular uptake and apoptosis-inducing properties of highly cytotoxic ruthenium-norharman complexes. Dalton Trans., 2011, 40(34), 8611-8621.
[http://dx.doi.org/10.1039/c1dt10084j] [PMID: 21804968]
[45]
Mangiapia, G.; Vitiello, G.; Irace, C.; Santamaria, R.; Colonna, A.; Angelico, R.; Radulescu, A.; D’Errico, G.; Montesarchio, D.; Paduano, L. Anticancer cationic ruthenium nanovectors: from rational molecular design to cellular uptake and bioactivity. Biomacromolecules, 2013, 14(8), 2549-2560.
[http://dx.doi.org/10.1021/bm400104b] [PMID: 23705931]
[46]
Vitiello, G.; Luchini, A.; D’Errico, G.; Santamaria, R.; Capuozzo, A.; Irace, C.; Montesarchio, D.; Paduano, L. Cationic liposomes as efficient nanocarriers for the drug delivery of an anticancer cholesterol-based ruthenium complex. J. Mater. Chem. B Mater. Biol. Med., 2015, 3, 3011-3023.
[http://dx.doi.org/10.1039/C4TB01807A]
[47]
Montesarchio, D.; Mangiapia, G.; Vitiello, G.; Musumeci, D.; Irace, C.; Santamaria, R.; D’Errico, G.; Paduano, L. A new design for nucleolipid-based Ru(III) complexes as anticancer agents. Dalton Trans., 2013, 42(48), 16697-16708.
[http://dx.doi.org/10.1039/c3dt52320a] [PMID: 24121739]
[48]
Irace, C.; Misso, G. Capuozzo1, A.; Piccolo1, M.; Riccardi, C.; Luchini, A.; Caraglia, M.; Paduano, L.; Montesarchio, D.; Santamaria, R. Antiproliferative effects of ruthenium-based nucleolipidic nanoaggregates in human models of breast cancer in vitro: insights into their mode of action. Sci. Rep., 2017, 7, 45236.
[http://dx.doi.org/10.1038/srep45236] [PMID: 28349991]
[49]
Poynton, F.E.; Bright, S.A.; Blasco, S.; Williams, D.C.; Kelly, J.M.; Gunnlaugsson, T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem. Soc. Rev., 2017, 46(24), 7706-7756.
[http://dx.doi.org/10.1039/C7CS00680B] [PMID: 29177281]
[50]
Gottschaldt, M.; Schubert, U.S.; Rau, S.; Yano, S.; Vos, J.G.; Kroll, T.; Clement, J.; Hilger, I. Sugar-selective enrichment of a D-glucose-substituted ruthenium bipyridyl complex inside HepG2 cancer cells. ChemBioChem, 2010, 11(5), 649-652.
[http://dx.doi.org/10.1002/cbic.200900769] [PMID: 20157911]
[51]
Lameijer, L.N.; Hopkins, S.L.; Brevé, T.G.; Askes, S.H.C.; Bonnet, S.D. Versus l-glucose conjugation: mitochondrial targeting of a light-activated dual-mode-of-action ruthenium-based anticancer prodrug. Chemistry, 2016, 22(51), 18484-18491.
[http://dx.doi.org/10.1002/chem.201603066] [PMID: 27859843]
[52]
Ghazarian, H.; Idoni, B.; Oppenheimer, S.B. A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem., 2011, 113(3), 236-247.
[http://dx.doi.org/10.1016/j.acthis.2010.02.004] [PMID: 20199800]
[53]
Santos, A.F.S.; da Silva, M.D.C.; Napoleão, T.H.; Paiva, P.M.G.; Correia, M.T.S.; Coelho, L.C.B.B. Lectins: function, structure, biological properties and potential applications. Curr. Top. Pept. Protein Res., 2014, 15, 41-62.
[54]
Sharon, N.; Lis, H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 2004, 14(11), 53R-62R.
[http://dx.doi.org/10.1093/glycob/cwh122] [PMID: 15229195]
[55]
Hasegawa, T.; Yonemura, T.; Matsuura, K.; Kobayashi, K. Tris-bipyridine ruthenium complex-based glyco-clusters: Amplified luminescence and enhanced lectin affinities. Tetrahedron Lett., 2001, 42, 3989-3992.
[http://dx.doi.org/10.1016/S0040-4039(01)00424-5]
[56]
Tomoko Okada, T.; Makino, T.; Minoura, N. Fluorescence emission and polarization for analyzing binding of ruthenium metalloglycocluster to lectin and tetanus toxin c-fragment. Bioconjug. Chem., 2009, 20, 1296-1298.
[http://dx.doi.org/10.1021/bc900101u] [PMID: 19537755]
[57]
Kojima, S.; Hasegawa, T.; Yonemura, T.; Sasaki, K.; Yamamoto, K.; Makimura, Y.; Takahashi, T.; Suzuki, T.; Suzuki, Y.; Kobayashi, K. Ruthenium complexes carrying a disialo complex-type oligosaccharide: enzymatic synthesis and its application to a luminescent probe to detect influenza viruses. Chem. Commun. (Camb.), 2003, (11), 1250-1251.
[http://dx.doi.org/10.1039/B210739B] [PMID: 12809215]
[58]
Mignani, S.; El Kazzouli, S.; Bousmina, M.M.; Majoral, J-P. Dendrimer space exploration: an assessment of dendrimers/dendritic scaffolding as inhibitors of protein-protein interactions, a potential new area of pharmaceutical development. Chem. Rev., 2014, 114(2), 1327-1342.
[http://dx.doi.org/10.1021/cr400362r] [PMID: 24127777]
[59]
Michlewska, S.; Ionov, M.; Maroto-Díaz, M.; Szwed, A.; Ihnatsyeu-Kachan, A.; Loznikova, S.; Shcharbin, D.; Maly, M.; Ramirez, R.G.; de la Mata, F.J.; Bryszewska, M. Ruthenium dendrimers as carriers for anticancer siRNA. J. Inorg. Biochem., 2018, 181, 18-27.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.01.001] [PMID: 29353086]
[60]
Kikkeri, R.; García-Rubio, I.; Seeberger, P.H. Ru(II)-carbohydrate dendrimers as photoinduced electron transfer lectin biosensors. Chem. Commun. (Camb.), 2009, (2), 235-237.
[http://dx.doi.org/10.1039/B814146K] [PMID: 19099080]
[61]
Kikkeri, R.; Liu, X.; Adibekian, A.; Tsai, Y.H.; Seeberger, P.H. Facile synthesis of size dependent Ru(II)-carbohydrate dendrimers via click chemistry. Chem. Commun. (Camb.), 2010, 46(13), 2197-2199.
[http://dx.doi.org/10.1039/b925113h] [PMID: 20234904]
[62]
Kikkeri, R.; Kamena, F.; Gupta, T.; Hossain, L.H.; Boonyarattanakalin, S.; Gorodyska, G.; Beurer, E.; Coullerez, G.; Textor, M.; Peter, H. Seeberger, P. H. Ru(II) glycodendrimers as probes to study lectin-carbohydrate interactions and electrochemically measure monosaccharide and oligosaccharide concentrations. Langmuir, 2010, 26(3), 1520-1523.
[http://dx.doi.org/10.1021/la9038792] [PMID: 20099915]
[63]
Dyson, P.J. Systematic design of a targeted organometallic antitumour drug in pre-clinical development. Chimia (Aarau), 2007, 61, 698-703.
[http://dx.doi.org/10.2533/chimia.2007.698]
[64]
Dougan, S.J.; Sadler, P.J. The design of organometallic ruthenium arene anticancer agents. Chimia (Aarau), 2007, 61, 704-715.
[http://dx.doi.org/10.2533/chimia.2007.704]
[65]
Nowak-Sliwinska, P.; van Beijnum, J.R.; Casini, A.; Nazarov, A.A.; Wagnières, G.; van den Bergh, H.; Dyson, P.J.; Griffioen, A.W. Organometallic ruthenium(II) arene compounds with antiangiogenic activity. J. Med. Chem., 2011, 54(11), 3895-3902.
[http://dx.doi.org/10.1021/jm2002074] [PMID: 21534534]
[66]
Morris, R.E.; Aird, R.E. Murdoch, Pdel.S.; Chen, H.; Cummings, J.; Hughes, N.D.; Parsons, S.; Parkin, A.; Boyd, G.; Jodrell, D.I.; Sadler, P.J. Inhibition of cancer cell growth by ruthenium(II) arene complexes. J. Med. Chem., 2001, 44(22), 3616-3621.
[http://dx.doi.org/10.1021/jm010051m] [PMID: 11606126]
[67]
Scolaro, C.; Bergamo, A.; Brescacin, L.; Delfino, R.; Cocchietto, M.; Laurenczy, G.; Geldbach, T.J.; Sava, G.; Dyson, P.J. In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes. J. Med. Chem., 2005, 48(12), 4161-4171.
[http://dx.doi.org/10.1021/jm050015d] [PMID: 15943488]
[68]
Süss-Fink, G. Arene ruthenium complexes as anticancer agents. Dalton Trans., 2010, 39(7), 1673-1688.
[http://dx.doi.org/10.1039/B916860P] [PMID: 20449402]
[69]
Therrien, B.; Furrer, J. The biological side of water-soluble arene ruthenium assemblies. Adv. Chem., 2014, 2014, 1-20.
[http://dx.doi.org/10.1155/2014/589686]
[70]
Berger, I.; Hanif, M.; Alexey, A. Nazarov, A. A.; Hartinger, C. G.; John, R. O.; Kuznetsov, M. L.; Groessl, M.; Schmitt, F.; Zava, O.; Biba, F.; Arion, V. B.; Galanski, M.; Jakupec, M. A.; Juillerat-Jeanneret, L.; Paul J. Dyson, P. J.; Keppler, B. K. Chemistry, 2008, 14, 9046-9057.
[http://dx.doi.org/10.1002/chem.200801032] [PMID: 18688905]
[71]
Muhammad Hanif, M.; Meier, S.M.; Kandioller, W.; Bytzek, A. Hejl; M.; Hartinger, C. G.; Nazarov, A. A.; Arion, V. B.; Jakupec, M. A.; Dyson, P. J.; Keppler, B. K. From hydrolytically labile to hydrolytically stable Ru(II)-arene anticancer complexes with carbohydrate-derived co-ligands. J. Inorg. Biochem., 2011, 105, 224-231.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.10.004] [PMID: 21194622]
[72]
Hanif, M.; Meier, S.M.; Nazarov, A.A.; Risse, J.; Legin, A.; Casini, A.; Jakupec, M.A.; Keppler, B.K.; Hartinger, C.G. Influence of the π-coordinated arene on the anticancer activity of ruthenium(II) carbohydrate organometallic complexes. Front Chem., 1, 27.
[http://dx.doi.org/10.3389/fchem.2013.00027] [PMID: 24790955]
[73]
Nazarov, A.A.; Risse, J.; Ang, W.H.; Schmitt, F.; Zava, O.; Ruggi, A.; Groessl, M.; Scopelitti, R.; Juillerat-Jeanneret, L.; Hartinger, C.G.; Paul, J. Dyson, P. J. Anthracene-tethered ruthenium(II) arene complexes as tools to visualize the cellular localization of putative organometallic anticancer compounds. Inorg. Chem., 2012, 51, 3633-3639.
[http://dx.doi.org/10.1021/ic202530j] [PMID: 22394115]
[74]
Aird, R.E.; Cummings, J.; Ritchie, A.A.; Muir, M.; Morris, R.E.; Chen, H.; Sadler, P.J.; Jodrell, D.I. In vitro and in vivo activity and cross resistance profiles of novel ruthenium (II) organometallic arene complexes in human ovarian cancer. Br. J. Cancer, 2002, 86(10), 1652-1657.
[http://dx.doi.org/10.1038/sj.bjc.6600290] [PMID: 12085218]
[75]
Grau-Campistany, A.; Massaguer, A.; Carrion-Salip, D.; Barragán, F.; Artigas, G.; López-Senín, P.; Moreno, V.; Marchán, V. Conjugation of a Ru(II) arene complex to neomycin or to guanidinoneomycin leads to compounds with differential cytotoxicities and accumulation between cancer and normal cells. Mol. Pharm., 2013, 10(5), 1964-1976.
[http://dx.doi.org/10.1021/mp300723b] [PMID: 23510087]
[76]
Chittapragada, M.; Roberts, S.; Ham, Y.W. Aminoglycosides: molecular insights on the recognition of RNA and aminoglycoside mimics. Perspect. Medicin. Chem., 2009, 3, 21-37.
[http://dx.doi.org/10.4137/PMC.S2381] [PMID: 19812740]
[77]
Houghton, J.L.; Green, K.D.; Chen, W.; Garneau-Tsodikova, S. The future of aminoglycosides: the end or renaissance? ChemBioChem, 2010, 11(7), 880-902.
[http://dx.doi.org/10.1002/cbic.200900779] [PMID: 20397253]
[78]
Garcia, M.H.; Morais, T.S.; Florindo, P.; Piedade, M.F.M.; Moreno, V.; Ciudad, C.; Noe, V. Inhibition of cancer cell growth by ruthenium(II) cyclopentadienyl derivative complexes with heteroaromatic ligands. J. Inorg. Biochem., 2009, 103, 354-361.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.11.016] [PMID: 19128838]
[79]
Moreno, V.; Lorenzo, J.; Aviles, F.X.; Garcia, M.H.; Ribeiro, J.P.; Morais, T.S.; Florindo, P.; Robalo, M.P. Studies of the antiproliferative activity of ruthenium (ii) cyclopentadienyl-derived complexes with nitrogen coordinated ligands. Bioinorg. Chem. Appl. 2010. Article ID 936834 1-11.
[http://dx.doi.org/10.1155/2010/936834]
[80]
Moreno, V.; Font-Bardia, M.; Calvet, T.; Lorenzo, J.; Avilés, F.X.; Garcia, M.H.; Morais, T.S.; Valente, A.; Robalo, M.P. DNA interaction and cytotoxicity studies of new ruthenium(II) cyclopentadienyl derivative complexes containing heteroaromatic ligands. J. Inorg. Biochem., 2011, 105(2), 241-249.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.10.009] [PMID: 21194624]
[81]
Tomaz, A.I.; Jakusch, T.; Morais, T.S.; Marques, F.; de Almeida, R.F.; Mendes, F.; Enyedy, É.A.; Santos, I.; Pessoa, J.C.; Kiss, T.; Garcia, M.H. [RuII(η5-C5H5)(bipy)(PPh3)]+, a promising large spectrum antitumor agent: cytotoxic activity and interaction with human serum albumin. J. Inorg. Biochem., 2012, 117, 261-269.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.06.016] [PMID: 22877927]
[82]
Morais, T.S.; Santos, F.; Côrte-Real, L.; Marques, F.; Robalo, M.P.; Madeira, P.J.A.; Garcia, M.H. Biological activity and cellular uptake of [Ru(η5-C5H5)(PPh3)(Me2bpy)][CF3SO3] complex. J. Inorg. Biochem., 2013, 122, 8-17.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.01.011] [PMID: 23416310]
[83]
Morais, T.S.; Santos, F.C.; Jorge, T.F.; Côrte-Real, L.; Madeira, P.J.; Marques, F.; Robalo, M.P.; Matos, A.; Santos, I.; Garcia, M.H. New water-soluble ruthenium(II) cytotoxic complex: biological activity and cellular distribution. J. Inorg. Biochem., 2014, 130, 1-14.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.09.013] [PMID: 24145065]
[84]
Côrte-Real, L.; Mendes, F.; Coimbra, J.; Morais, T.S.; Tomaz, A.I.; Valente, A.; Garcia, M.H.; Santos, I.; Bicho, M.; Marques, F. Anticancer activity of structurally related ruthenium(II) cyclopentadienyl complexes. J. Biol. Inorg. Chem., 2014, 19(6), 853-867.
[http://dx.doi.org/10.1007/s00775-014-1120-y] [PMID: 24562604]
[85]
Côrte-Real, L.; Robalo, M.P.; Marques, F.; Nogueira, G.; Avecilla, F.; Silva, T.J.L.; Santos, F.C.; Tomaz, A.I.; Garcia, M.I.; Valente, A. The key role of coligands in novel ruthenium(II)-cyclopentadienyl bipyridine derivatives: ranging from non-cytotoxic to highly cytotoxic compounds. J. Biol. Inorg. Chem., 2015, 150, 148-159.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.06.015] [PMID: 26150132]
[86]
Valente, A.; Garcia, M.H.; Marques, F.; Miao, Y.; Rousseau, C.; Zinck, P. First polymer “ruthenium-cyclopentadienyl” complex as potential anticancer agent. J. Inorg. Biochem., 2013, 127, 79-81.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.07.002] [PMID: 23896008]
[87]
Florindo, P.; Marques, I.J.; Nunes, C.D.; Fernandes, A.C. Synthesis, characterization and cytotoxicity of cyclopentadienyl ruthenium(II) complexes containing carbohydrate-derived ligands. J. Organomet. Chem., 2014, 760, 240-247.
[http://dx.doi.org/10.1016/j.jorganchem.2013.09.004]
[88]
Walker, J.M.; McEwan, A.; Pycko, R.; Tassotto, M.L.; Gottardo, C.; Th’ng, J.; Wang, R.; Spivak, G.J. [Tris(pyrazolyl)methane]ruthenium complexes capable of inhibiting cancer cell growth. Eur. J. Inorg. Chem., 2009, 31, 4629-4633.
[http://dx.doi.org/10.1002/ejic.200900766]
[89]
Florindo, P.R.; Pereira, D.M.; Borralho, P.M.; Rodrigues, C.M.P.; Piedade, M.F.M.; Fernandes, A.C. Cyclopentadienyl-ruthenium(II) and iron(II) organometallic compounds with carbohydrate derivative ligands as good colorectal anticancer agents. J. Med. Chem., 2015, 58(10), 4339-4347.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00403] [PMID: 25923600]
[90]
Florindo, P.R.; Pereira, D.M.; Borralho, P.M.; Costa, P.J.; Piedade, M.F.M.; Rodrigues, C.M.P.; Fernandes, A.C. New [(η(5)-C5H5)Ru(N-N)(PPh3)][PF6] compounds: colon anticancer activity and GLUT-mediated cellular uptake of carbohydrate-appended complexes. Dalton Trans., 2016, 45(30), 11926-11930.
[http://dx.doi.org/10.1039/C6DT01571A] [PMID: 27216868]
[91]
Romão, C.C.; Walter, A.; Blättler, W.A.; Seixas, J.D.; Bernardes, G.J.L. Developing drug molecules for therapy with carbon monoxide. Chem. Soc. Rev., 2012, 41, 3571-3583.
[PMID: 22349541]
[92]
Kautz, A.C.; Kunz, P.C.; Janiak, C. CO-releasing molecule (CORM) conjugate systems. Dalton Trans., 2016, 45(45), 18045-18063.
[http://dx.doi.org/10.1039/C6DT03515A] [PMID: 27808304]
[93]
Pena, A.C.; Penacho, N.; Mancio-Silva, L.; Neres, R.; Seixas, J.D.; Fernandes, A.C.; Romão, C.C.; Mota, M.M.; Bernardes, G.J.L.; Pamplona, A. A novel carbon monoxide-releasing molecule fully protects mice from severe malaria. Antimicrob. Agents Chemother., 2012, 56(3), 1281-1290.
[http://dx.doi.org/10.1128/AAC.05571-11] [PMID: 22155828]
[94]
Nazarov, A.A.; Baquié, M.; Nowak-Sliwinska, P. Zava1, O.; van Beijnum, J. R.; Groessl1, M.; Chisholm, D. M.; Ahmadi, Z.; McIndoe, J. S.; Griffioen, A. W.; van den Bergh, H.; Dyson, P. J. Sci. Rep., 2013, 3, 1485.
[http://dx.doi.org/10.1038/srep01485] [PMID: 23508096]
[95]
Fernández, M.; Arce, E.R.; Sarniguet, C.; Morais, T.S.; Tomaz, A.I.; Azar, C.O.; Figueroa, R.; Maya, J.D.; Medeiros, A.; Comini, M.; Garcia, M.H.; Otero, L.; Gambino, D. Novel ruthenium(II) cyclopentadienyl thiosemicarbazone compounds with antiproliferative activity on pathogenic trypanosomatid parasite. J. Biol. Inorg. Chem., 2015, 153, 306-314.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.06.018] [PMID: 26275470]
[96]
Arce, E.R.; Sarniguet, C.; Morais, T.S.; Vieites, M.; Tomaz, A.I.; Medeiros, A.; Comini, M.A.; Varela, J.; Cerecetto, H.; González, M.; Marques, F. Garcia. M. H.; Otero, L.; Gambino, D. A new ruthenium cyclopentadienyl azole compound with activity on tumor cell lines and trypanosomatid parasites. J. Coord. Chem., 2015, 68, 2923-2937.
[http://dx.doi.org/10.1080/00958972.2015.1062480]
[97]
Sanche-Delgado, R.A.; Navarro, M.; Perez, H. Urbina. Toward a novel metal-based chemotherapy against tropical diseases. 2. Synthesis and antimalarial activity in vitro and in vivo of new ruthenium- and rhodium-chloroquine complexes. J. A. J. Med. Chem., 1996, 39(5), 1095-1099.
[http://dx.doi.org/10.1021/jm950729w] [PMID: 8676344]
[98]
Dwyer, D.S.; Gordon, K.; Jones, B. Ruthenium Red potently inhibits immune responses both in vitro and in vivo. Int. J. Immunopharmacol., 1995, 17(11), 931-940.
[http://dx.doi.org/10.1016/0192-0561(95)00079-8] [PMID: 8788122]
[99]
Clarke, M.J.; Bailey, V.M.; Doan, P.E.; Hiller, C.D.; LaChance-Galang, K.J.; Daghlian, H.; Mandal, S.; Bastos, C.M.; Lang, D. 1H NMR, EPR, UV-Vis, and electrochemical studies of imidazole complexes of Ru(III). crystal structures of cis-[(Im)(2)(NH(3))(4)Ru(III)]Br(3) and [(1MeIm)(6)Ru(II)]Cl(2).2H(2)O. Inorg. Chem., 1996, 35(17), 4896-4903.
[http://dx.doi.org/10.1021/ic960355c] [PMID: 11666690]
[100]
Allardyce, C.S.; Dyson, P.J.; Ellis, D.J.; Salter, P.A.; Scopelliti, R. Synthesis and characterisation of some water soluble ruthenium(II)-arene complexes and an investigation of their antibiotic and antiviral properties. J. Organomet. Chem., 2003, 668, 35-42.
[http://dx.doi.org/10.1016/S0022-328X(02)01926-5]
[101]
Li, F.; Collins, J.G.; Keene, F.R. Ruthenium complexes as antimicrobial agents. Chem. Soc. Rev., 2015, 44(8), 2529-2542.
[http://dx.doi.org/10.1039/C4CS00343H] [PMID: 25724019]
[102]
Hayton, T.W.; Legzdins, P.; Sharp, W.B. Coordination and organometallic chemistry of metal-NO complexes. Chem. Rev., 2002, 102(4), 935-992.
[http://dx.doi.org/10.1021/cr000074t] [PMID: 11942784]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy