Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Comparative Efficacy of Chitosan, Pectin Based Mesalamine Colon Targeted Drug Delivery Systems on TNBS-induced IBD Model Rats

Author(s): Amaldoss M.J. Newton* and Prabakaran Lakshmanan

Volume 19, Issue 2, 2020

Page: [113 - 127] Pages: 15

DOI: 10.2174/1871523018666190118112230

Abstract

Objective: A number of natural polymer-based drug delivery systems targeting the colon are reported for different applications. Most of the research is based on the class of natural polymers such as polysaccharides. This study compares the anti-inflammatory effect of different polysaccharide based tablets on IBD when a drug carrier is targeted to the colon as matrix and coated systems.

Methods: The TNBS induced IBD Wistar rats were used as a model for the study. The microscopic and macroscopic parameters were studied in detail. Almost all the important IBD parameters were reported in this work.

Results: The results demonstrated that the polysaccharides are efficient in carrying the drugs to the colon. Reduction in the level of ulcer index (UI), Myeloperoxidase (MPO), and Malondialdehyde MDA, confirmed the inhibitory activity on the development of Reactive oxygen species (ROS). The increased level of Tumor necrosis factor (TNFα) an expression of colonic inducible nitric oxide synthase (iNOS) was lowered in treatments as compared to TNBS control.

Conclusion: The different polymer-based mesalamine (DPBM) confirmed the efficient anti- inflammatory activity on IBD induced rats. The increased level of glutathione (GSH), and superoxide dismutase (SOD) also confirmed the effective anti-inflammatory effect. A significant decrease in the ulcer score and ulcer area was reported. The investigation revealed that chitosan is superior to pectin in IBD treatment likewise polysaccharide-based matrix systems are superior to the coated system.

Keywords: Chitosan, pectin, IBD, MDA, MPO, SOD, TNBS, TNF α.

Graphical Abstract
[1]
Maroni, A.; Del Curto, M.D.; Zema, L.; Foppoli, A.; Gazzaniga, A. Film coatings for oral colon delivery. Int. J. Pharm., 2013, 457(2), 372-394.
[2]
Patel, M.M. Colon: a gateway for chronotherapeutic drug delivery systems. Expert Opin. Drug Deliv., 2015, 12(9), 1389-1395.
[http://dx.doi.org/10.1517/17425247.2015.1060217]
[3]
Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull., 1999, 46(3), 183-196.
[PMID: 10421978]
[4]
Nugent, S.G.; Kumar, D.; Rampton, D.S.; Evans, D.F. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut, 2001, 48(4), 571-577.
[http://dx.doi.org/10.1136/gut.48.4.571] [PMID: 11247905]
[5]
Fallingborg, J.; Pedersen, P.; Jacobsen, B.A. Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn’s disease. Dig. Dis. Sci., 1998, 43(4), 702-705.
[http://dx.doi.org/10.1023/A:1018893409596] [PMID: 9558022]
[6]
Raimundo, A.H.; Patil, D.H.; Frost, P.G.; Silk, D.B.A. Effects of olsalazine and sulphasalazine on jejunal and ileal water and electrolyte absorption in normal human subjects. Gut, 1991, 32(3), 270-274.
[http://dx.doi.org/10.1136/gut.32.3.270] [PMID: 1672860]
[7]
Fallingborg, J.; Christensen, L.A.; Jacobsen, B.A.; Rasmussen, S.N. Very low intraluminal colonic pH in patients with active ulcerative colitis. Dig. Dis. Sci., 1993, 38(11), 1989-1993.
[http://dx.doi.org/10.1007/BF01297074] [PMID: 8223071]
[8]
Press, A.G.; Hauptmann, I.A.; Hauptmann, L.; Fuchs, B.; Fuchs, M.; Ewe, K.; Ramadori, G. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther., 1998, 12(7), 673-678.
[http://dx.doi.org/10.1046/j.1365-2036.1998.00358.x] [PMID: 9701532]
[9]
Sasaki, Y.; Hada, R.; Nakajima, H.; Fukuda, S.; Munakata, A. Improved localizing method of radiopill in measurement of entire gastrointestinal pH profiles: colonic luminal pH in normal subjects and patients with Crohn’s disease. Am. J. Gastroenterol., 1997, 92(1), 114-118.
[PMID: 8995949]
[10]
Bansal, V.; Malviya, R.; Malaviya, T.; Sharma, P.K. Novel prospective in colon specific drug delivery system. Polim. Med., 2014, 44(2), 109-118.
[PMID: 24967782]
[11]
Xie, M.; Chen, H-H.; Nie, S-P.; Yin, J-Y.; Xie, M-Y. Gamma-aminobutyric acid increases the production of short-chain fatty acids and decreases pH values in mouse colon. Molecules, 2017, 22(4), 653.
[12]
Wong, T.W.; Colombo, G.; Sonvico, F. Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech, 2011, 12(1), 201-214.
[http://dx.doi.org/10.1208/s12249-010-9564-z] [PMID: 21194013]
[13]
Elkhodairy, K.A.; Elsaghir, H.A.; Al-Subayiel, A.M. Formulation of indomethacin colon targeted delivery systems using polysaccharides as carriers by applying liquisolid technique. BioMed Res. Int., 2014, 2014704362
[http://dx.doi.org/10.1155/2014/704362] [PMID: 24971345]
[14]
Varshosaz, J.; Emami, J.; Tavakoli, N.; Minaiyan, M.; Rahmani, N.; Dorkoosh, F.; Mahzouni, P. Pectin film coated pellets for colon-targeted delivery of budesonide: in-vitro/in-vivo evaluation in induced ulcerative colitis in the rat. Iran. J. Pharm. Res., 2012, 11(3), 733-745.
[PMID: 24250500]
[15]
Carbinatto, F.M.; Ribeiro, T.S.; Colnago, L.A.; Evangelista, R.C.; Cury, B.S.F. Preparation and characterization of amyloseinclusion complexes for drug delivery applications. J. Pharm. Sci., 2015, 105(1), 231-241.
[http://dx.doi.org/10.1002/jps.24702] [PMID: 26579874]
[16]
Rajpurohit, H.; Sharma, P.; Sharma, S.; Bhandari, A. Polymers for colon targeted drug delivery. Indian J. Pharm. Sci., 2010, 72(6), 689-696.
[http://dx.doi.org/10.4103/0250-474X.84576] [PMID: 21969739]
[17]
Newton, A.M.; Lakshmanan, P. Effect of HPMC - E15 LV premium polymer on release profile and compression characteristics of chitosan/ pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile. Recent Pat. Drug Deliv. Formul., 2014, 8(1), 46-62.
[http://dx.doi.org/10.2174/1872211308666140225143926] [PMID: 24597626]
[18]
Newton, A.M.J.; Prabakaran, L.; Jayaveera, K.N. Pectin-HPMC E15LV vs pH sensitive polymer coating films for delayed drug delivery to the colon: a comparison of two dissolution models to assess colonic targeting performance in-vitro. Int. J. Appl. Res. Nat. Prod., 2012, 5(3), 1-16.
[19]
Newton, A.M.; Prabakaran, L.; Jayaveera, K.N. Formulation development, optimization, and study on drug release kinetics of Eudragit® L100-HPMC E15 LV mixed film-coated colon-targeted Mesalamine tablets. Asian J. Pharm., 2012, 6, 180-189.
[http://dx.doi.org/10.4103/0973-8398.104832]
[20]
Elson, C.O.; Sartor, R.B.; Tennyson, G.S.; Riddell, R.H. Experimental models of inflammatory bowel disease. Gastroenterology, 1995, 109(4), 1344-1367.
[http://dx.doi.org/10.1016/0016-5085(95)90599-5] [PMID: 7557106]
[21]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction., Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[22]
Byun, Y.J.; Lee, S-B.; Lee, H.O.; Son, M.J.; Kim, H-S.; Kwon, O-J.; Jeong, S-W. Vacuolar H+ -ATPase c protects glial cell death induced by sodium nitroprusside under glutathione-depleted condition. J. Cell. Biochem., 2011, 112(8), 1985-1996.
[http://dx.doi.org/10.1002/jcb.23105] [PMID: 21433058]
[23]
Oh, S.Y.; Cho, K.A.; Kang, J.L.; Kim, K.H.; Woo, S.Y. Comparison of experimental mouse models of inflammatory bowel disease. Int. J. Mol. Med., 2014, 33(2), 333-340.
[http://dx.doi.org/10.3892/ijmm.2013.1569] [PMID: 24285285]
[24]
Heits, F.; Stahl, M.; Ludwig, D.; Stange, E.F.; Jelkmann, W. Elevated serum thrombopoietin and interleukin-6 concentrations in thrombocytosis associated with inflammatory bowel disease. J. Interferon Cytokine Res., 1999, 19(7), 757-760.
[http://dx.doi.org/10.1089/107999099313604] [PMID: 10454346]
[25]
Nielsen, O.H.; Vainer, B.; Madsen, S.M.; Seidelin, J.B.; Heegaard, N.H. Established and emerging biological activity markers of inflammatory bowel disease. Am. J. Gastroenterol., 2000, 95(2), 359-367.
[PMID: 10685736]
[26]
Harries, A.D.; Fitzsimons, E.; Fifield, R.; Dew, M.J.; Rhoades, J. Platelet count: a simple measure of activity in Crohn’s disease. Br. Med. J. (Clin. Res. Ed.), 1983, 286(6376), 1476.
[http://dx.doi.org/10.1136/bmj.286.6376.1476] [PMID: 6405846]
[27]
Jagtap, A.G.; Shirke, S.S.; Phadke, A.S. Effect of polyherbal formulation on experimental models of inflammatory bowel diseases. J. Ethnopharmacol., 2004, 90(2-3), 195-204.
[http://dx.doi.org/10.1016/j.jep.2003.09.042] [PMID: 15013181]
[28]
Schultz, M.; Sartor, R.B. Probiotics and inflammatory bowel diseases. Am. J. Gastroenterol., 2000, 95(Suppl. 1), S19-S21.
[http://dx.doi.org/10.1016/S0002-9270(99)00812-6] [PMID: 10634224]
[29]
Krawisz, J.E.; Sharon, P.; Stenson, W.F. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology, 1984, 87(6), 1344-1350.
[http://dx.doi.org/10.1016/0016-5085(84)90202-6] [PMID: 6092199]
[30]
Pavlick, K.P.; Laroux, F.S.; Fuseler, J.; Wolf, R.E.; Gray, L.; Hoffman, J.; Grisham, M.B. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic. Biol. Med., 2002, 33(3), 311-322.
[http://dx.doi.org/10.1016/S0891-5849(02)00853-5] [PMID: 12126753]
[31]
Rachmilewitz, D.; Stamler, J.S.; Karmeli, F.; Mullins, M.E.; Singel, D.J.; Loscalzo, J.; Xavier, R.J.; Podolsky, D.K. Peroxynitrite-induced rat colitis--a new model of colonic inflammation. Gastroenterology, 1993, 105(6), 1681-1688.
[http://dx.doi.org/10.1016/0016-5085(93)91063-N] [PMID: 8253344]
[32]
Ikeda, I.; Kasajima, T.; Ishiyama, S.; Shimojo, T.; Takeo, Y.; Nishikawa, T.; Kameoka, S.; Hiroe, M.; Mitsunaga, A. Distribution of inducible nitric oxide synthase in ulcerative colitis. Am. J. Gastroenterol., 1997, 92(8), 1339-1341.
[PMID: 9260802]
[33]
McCafferty, D.M.; Miampamba, M.; Sihota, E.; Sharkey, K.A.; Kubes, P. Role of inducible nitric oxide synthase in trinitrobenzene sulphonic acid induced colitis in mice. Gut, 1999, 45(6), 864-873.
[http://dx.doi.org/10.1136/gut.45.6.864] [PMID: 10562585]
[34]
Guo, X.; Wang, W.P.; Ko, J.K.; Cho, C.H. Involvement of neutrophils and free radicals in the potentiating effects of passive cigarette smoking on inflammatory bowel disease in rats. Gastroenterology, 1999, 117(4), 884-892.
[http://dx.doi.org/10.1016/S0016-5085(99)70347-1] [PMID: 10500071]
[35]
de Moreno de LeBlanc, A.; LeBlanc, J.G.; Perdigón, G.; Miyoshi, A.; Langella, P.; Azevedo, V.; Sesma, F. Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice. J. Med. Microbiol., 2008, 57(Pt 1), 100-105.
[http://dx.doi.org/10.1099/jmm.0.47403-0] [PMID: 18065674]
[36]
Hagar, H.H.; El-Medany, A.; El-Eter, E.; Arafa, M. Ameliorative effect of pyrrolidinedithiocarbamate on acetic acid-induced colitis in rats. Eur. J. Pharmacol., 2007, 554(1), 69-77.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.066] [PMID: 17112501]
[37]
Wéra, O.; Lancellotti, P.; Oury, C. The dual role of neutrophils in inflammatory bowel diseases. J. Clin. Med., 2016, 5(12), 118.
[http://dx.doi.org/10.3390/jcm5120118] [PMID: 27999328]
[38]
Stallmach, A.; Giese, T.; Schmidt, C.; Ludwig, B.; Mueller-Molaian, I.; Meuer, S.C. Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn’s disease. Int. J. Colorectal Dis., 2004, 19(4), 308-315.
[http://dx.doi.org/10.1007/s00384-003-0554-4] [PMID: 14605835]
[39]
Miettinen, M.; Vuopio-Varkila, J.; Varkila, K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun., 1996, 64(12), 5403-5405.
[http://dx.doi.org/10.1128/IAI.64.12.5403-5405.1996] [PMID: 8945595]
[40]
Peña, J.A.; Versalovic, J. Lactobacillus rhamnosus GG decreases TNF-α production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cell. Microbiol., 2003, 5(4), 277-285.
[http://dx.doi.org/10.1046/j.1462-5822.2003.t01-1-00275.x] [PMID: 12675685]
[41]
Raychaudhuri, S.P.; Raychaudhuri, S.K. Biologics: target-specific treatment of systemic and cutaneous autoimmune diseases. Indian J. Dermatol., 2009, 54(2), 100-109.
[http://dx.doi.org/10.4103/0019-5154.53175] [PMID: 20101303]
[42]
Aggarwal, B.B.; Gupta, S.C.; Sung, B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br. J. Pharmacol., 2013, 169(8), 1672-1692.
[http://dx.doi.org/10.1111/bph.12131] [PMID: 23425071]
[43]
Morris, G.; Kök, S.; Harding, S.; Adams, G. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol. Genet. Eng. Rev., 2010, 27(1), 257-284.
[http://dx.doi.org/10.1080/02648725.2010.10648153] [PMID: 21415901]
[44]
Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Why is chitosan mucoadhesive? Biomacromolecules, 2008, 9(7), 1837-1842.
[http://dx.doi.org/10.1021/bm800276d] [PMID: 18540644]
[45]
Azuma, K.; Osaki, T.; Minami, S.; Okamoto, Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater., 2015, 6(1), 33-49.
[http://dx.doi.org/10.3390/jfb6010033]
[46]
Yang, E-J.; Kim, J-G.; Kim, J-Y.; Kim, S.C.; Lee, N.H.; Hyun, C-G. Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Cent. Eur. J. Biol., 2010, 5(1), 95-102.
[http://dx.doi.org/10.2478/s11535-009-0066-5]

© 2024 Bentham Science Publishers | Privacy Policy