Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

The Cardiovascular Protective Effects of Chrysin: A Narrative Review on Experimental Researches

Author(s): Tahereh Farkhondeh, Saeed Samarghandian* and Fereshteh Bafandeh

Volume 17, Issue 1, 2019

Page: [17 - 27] Pages: 11

DOI: 10.2174/1871525717666190114145137

Abstract

Chrysin is one of the flavonoids fruits, vegetables, and plant especially found in honey, it has been indicated that its cardiovascular protective effect is due to its antioxidative effects and anti-inflammatory activities. Chrysin exerts an antioxidant effect by enhancing the antioxidant system, suppressing pro-oxidant enzymes, scavenging free radicals and chelating redox active transition metal ions. Chrysin decreases lipid synthesis and also increases its metabolism, thereby ameliorating blood lipid profile. Chrysin modulates vascular function by increasing the bioavailability of endothelial nitric oxide. Chrysin inhibits the development of atherosclerosis by decreasing vascular inflammation. The anti-inflammatory effects of chrysin may relate to its inhibitory effect on the nuclear transcriptional factor-kB signaling pathway. It also prevents vascular smooth muscle cells proliferation and thrombogenesis. Altogether, chrysin may be effective as a natural agent for the prevention and treatment of cardiovascular diseases; however, several clinical trial studies should be done to confirm its protective effects on humans.

Keywords: Antioxidant, apoptosis, cardiovascular disease, chrysin, inflammation, oxidative stress.

Graphical Abstract
[1]
Wolfman, C.; Viola, H.; Paladini, A.; Dajas, F.; Medina, J.H. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passifloracoerulea. Pharmacol. Biochem. Behav., 1994, 47(1), 1-4.
[2]
Yang, M.; Xiong, J.; Zou, Q.; Wang, D.D.; Huang, C.X. Chrysin attenuates interstitial fibrosis and improves cardiac function in a rat model of acute myocardial infarction. J. Mol. Histol., 2018, 49(6), 555-565.
[3]
Williams, C.A.; Harborne, J.B.; Newman, M.; Greenham, J.; Eagles, J. Chrysin and other leaf exudate flavonoids in the genus Pelargonium. Phytochemistry, 1997, 46(8), 1349-1353.
[4]
Zheng, X.; Zhao, F.F.; Liu, Y.M.; Yao, X.; Zheng, Z.T.; Luo, X.; Liao, D.F. Synthesis and preliminary biological evaluation of chrysin derivatives as potential anticancer drugs. Med. Chem., 2010, 6(1), 6-8.
[5]
Habtemariam, S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-α in L-929 tumor cells. J. Nat. Prod., 1997, 60, 775-778.
[6]
Harris, G.K.; Qian, Y.; Leonard, S.S.; Sbarra, D.C.; Shi, X.L. Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E-2 formation in RAW 264.7 cells. J. Nutr., 2006, 136, 1517-1521.
[7]
Ko, C.H.; Shen, S.C.; Lin, H.Y.; Hou, W.C.; Lee, W.R.; Yang, L.L.; Chen, Y.C. Flavanones structure-related inhibition on TPA-induced tumor promotion through suppression of extracellular signal-regulated protein kinases: Involvement of prostaglandin E-2 in anti-promotive process. J. Cell. Physiol., 2002, 193, 93-102.
[8]
Hou, D.X.; Yanagita, T.; Uto, T.; Masuzaki, S.; Fujii, M. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: Structure-activity relationship and molecular mechanisms involved. Biochem. Pharmacol., 2005, 70, 417-425.
[9]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13, 572-584.
[10]
Medina, J.H.; Paladini, A.C.; Wolfman, C.; De Stein, M.L.; Calvo, D.; Diaz, L.E.; Peña, C. Chrysin (5, 7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem. Pharmacol., 1990, 40(10), 2227-2231.
[11]
Tsuji, P.A.; Walle, T. Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chem. Biol. Interact., 2008, 171(1), 37-44.
[12]
Ge, S.; Gao, S.; Yin, T.; Hu, M. Determination of pharmacokinetics of chrysin and its conjugates in wild-type FVB and BCRP1 knockout mice using a validated LC-MS/MS method. J. Agric. Food Chem., 2015, 63(11), 2902-2910.
[13]
Melekoglu, R.; Ciftci, O.; Eraslan, S.; Alan, S.; Basak, N. The protective effects of glycyrrhetinic acid and chrysin against ischemia-reperfusion injury in rat ovaries. BioMed Res. Int., 2018, 20185421308
[14]
Sulaiman, G.M.; Jabir, M.S.; Hameed, A.H. Nanoscale modification of chrysin for improved of therapeutic efficiency and cytotoxicity. Artif. Cells Nanomed. Biotechnol., 2018, 31, 1-13.
[15]
Wu, T.C.; Chan, S.T.; Chang, C.N.; Yu, P.S.; Chuang, C.H.; Yeh, S.L. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem. Biol. Interact., 2018, 292, 101-109.
[16]
Zhao, S.; Liang, M.; Wang, Y.; Hu, J.; Zhong, Y.; Li, J.; Huang, K.; Li, Y. Chrysin suppresses vascular endothelial inflammation via inhibiting the NF-κB signaling pathway. J. Cardiovasc. Pharmacol. Ther., 2018, 1074248418810809
[http://dx.doi.org/10.1177/ 1074248418810809]
[17]
Testai, L.; Martelli, A.; Cristofaro, M.; Breschi, M.C.; Calderone, V. Cardioprotective effects of different flavonoids against myocardial ischaemia/ reperfusion injury in Langendorff-perfused rat hearts. J. Pharm. Pharmacol., 2013, 65, 750-756.
[18]
Tian, S.S.; Jiang, F.S.; Zhang, K.; Zhu, X.X.; Jin, B.; Lu, J.J.; Ding, Z.S. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis. Fitoterapia, 2014, 92, 34-40.
[19]
Bae, Y.; Lee, S.; Kim, S.H. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-kB. Toxicol. Appl. Pharmacol., 2011, 254, 56-64.
[20]
Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Hasanzadeh, M.; Jabbari, F.; Farkhondeh, T.; Samini, M. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn. Mag., 2016, 12(4), S436-S440.
[21]
Yao, Y.; Chen, L.; Xiao, J.; Wang, C.; Jiang, W.; Zhang, R.; Hao, J. Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation. IJMS, 2014, 15(11), 20913-20926.
[22]
Mantawy, E.M.; El-Bakly, W.M.; Esmat, A.; Badr, A.M.; El-Demerdash, E. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur. J. Pharmacol., 2014, 728, 107-118.
[23]
Mehrpour, O.; Aghabiklooei, A.; Abdollahi, M.; Singh, S. Severe hypoglycemia following acute aluminum phosphide (rice tablet) poisoning; a case report and review of the literature. Acta Med. Iran., 2012, 50(8), 568-571.
[24]
Rehman, M.U.; Tahir, M.; Khan, A.Q.; Khan, R.; Lateef, A.; Qamar, W.; Sultana, S. Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: Plausible role of NF-κB. Toxicol. Lett., 2013, 216(2-3), 146-158.
[25]
Sharma, P.; Kumari, A.; Gulati, A.; Krishnamurthy, S.; Hemalatha, S. Chrysin isolated from Pyrus pashia fruit ameliorates convulsions in experimental animals. Nutr. Neurosci., 2019, 22(8), 569-577.
[26]
Uhl, M.; Ecker, S.; Kassie, F.; Lhoste, E.; Chakraborty, A.; Mohn, G.; Knasmüller, S. Effect of chrysin, a flavonoid compound, on the mutagenic activity of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) and benzo (a) pyrene (B (a) P) in bacterial and human hepatoma (HepG2) cells. Arch. Toxicol., 2003, 77(8), 477-484.
[27]
Mehrpour, O.; Karrari, P.; Abdollahi, M. Chronic lead poisoning in Iran; a silent disease. Daru, 2012, 20(1), 8.
[28]
Souza, L.C.; Antunes, M.S.; Borges Filho, C.; Del Fabbro, L.; De Gomes, M.G.; Goes, A.T.R.; Jesse, C.R. Flavonoid chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacol. Biochem. Behav., 2015, 134, 22-30.
[29]
Goodarzi, F.; Mehrpour, O.; Eizadi-Mood, N. View correspondence (jump link). A study to evaluate factors associated with seizure in tramadol poisoning in Iran. Indian J. Forensic Med. Toxicol, 2011, 5(2), 66-69.
[30]
Karrari, P.; Mehrpour, O.; Afshari, R.; Keyler, D. Pattern of illicit drug use in patients referred to addiction treatment centres in Birjand, Eastern Iran. J. Pak. Med. Assoc., 2013, 63(6), 711-716.
[31]
Alinejad, S.; Aaseth, J.; Abdollahi, M.; Hassanian-Moghaddam, H.; Mehrpour, O. Clinical aspects of opium adulterated with lead in Iran: A review. Basic Clin. Pharmacol. Toxicol., 2018, 122(1), 56-64.
[32]
Mehrpour, O.; Amouzeshi, A.; Dadpour, B.; Oghabian, Z.; Zamani, N.; Amini, S.; Hoffman, R.S. Successful treatment of cardiogenic shock with an intraaortic balloon pump following aluminium phosphide poisoning. Arh. Hig. Rada Toksikol., 2014, 65(1), 121-126.
[33]
Samarghandian, S.; Ohata, H.; Yamauchi, N.; Shibasaki, T. Corticotropin-releasing factor as well as opioid and dopamine are involved in tail-pinch-induced food intake of rats. Neuroscience, 2003, 116(2), 519-524.
[34]
Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol., 2015, 71, 40-56.
[35]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose Response, 2017, 15(1)1559325817691158
[36]
Patel, R.V.; Mistry, B.; Syed, R.; Rathi, A.K.; Lee, Y.J.; Sung, J.S.; Shinf, H.S.; Keum, Y.S. Chrysin-piperazine conjugates as antioxidant and anticancer agents. Eur. J. Pharm. Sci., 2016, 88, 166-177.
[37]
Hajzadeh, M.A.R.; Rajaei, Z.; Shafiee, S.; Alavinejhad, A.; Samarghandian, S.; Ahmadi, M. Effect of barberry fruit (Berberis Vulgaris) on serum glucose and lipids in streptozotocin-diabetic rats. Pharmacol. Online, 2011, 1, 809-817.
[38]
Berliner, J.A.; Navab, M.; Fogelman, A.M.; Frank, J.S.; Demer, L.L.; Edwards, P.A.; Lusis, A.J. Atherosclerosis: Basic mechanisms: Oxidation, inflammation, and genetics. Circulation, 1995, 91(9), 2488-2496.
[39]
Missassi, G.; Dos Santos Borges, C.; De Lima Rosa, J.; Villela e Silva, P.; Da Cunha Martins, A.; Barbosa, F.; De Grava Kempinas, W. Chrysin administration protects against oxidative damage in varicocele-induced adult rats. Oxid. Med. Cell Longev., 2017,, 2017.
[40]
Sharma, P.; Kumari, A.; Gulati, A.; Krishnamurthy, S.; Hemalatha, S. Chrysin isolated from Pyruspashia fruit ameliorates convulsions in experimental animals. Nutr. Neurosci., 2019, 22(8), 569-577.
[41]
Anandhi, R.; Annadurai, T.; Anitha, T.S.; Muralidharan, A.R.; Najmunnisha, K.; Nachiappan, V.; Thomas, P.A.; Geraldine, P. Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotusostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. J. Physiol. Biochem., 2013, 69(2), 313-323.
[42]
Yang, J.R. Effect of chrysin on expression of NOX4 and NF-κB in right ventricle of monocrotaline-induced pulmonary arterial hypertension of rats. Yao Xue Xue Bao, 2015, 50(9), 1128-1134.
[43]
Li, X.W.; Wang, X.M.; Li, S.; Yang, J.R. Effects of chrysin (5, 7-dihydroxyflavone) on vascular remodeling in hypoxia-induced pulmonary hypertension in rats. Chin. Med., 2015, 10(1), 4.
[44]
Veerappan, R.; Senthilkumar, R. Chrysin enhances antioxidants and oxidative stress in L-NAME-induced hypertensive rats. Int. J. Nutr. Pharmacol. Neurol. Dis, 2015, 5(1), 20.
[45]
Hecker, M.; Preiß, C.; Klemm, P.; Busse, R. Inhibition by antioxidants of nitric oxide synthase expression in murine macrophages: Role of nuclear factor kB and interferon regulatory factor 1. Br. J. Pharmacol., 1996, 118(8), 2178-2184.
[46]
Anandhi, R.; Thomas, P.A.; Geraldine, P. Evaluation of the anti-atherogenic potential of chrysin in Wistar rats. Mol. Cell. Biochem., 2014, 385(1-2), 103-113.
[47]
El‐Bassossy, H.M.; Abo‐Warda, S.M.; Fahmy, A. Chrysin and luteolin attenuate diabetes‐induced impairment in endothelial‐dependent relaxation: Effect on lipid profile, AGEs and NO generation. Phytother. Res., 2013, 27(11), 1678-1684.
[48]
Samarghandian, S.; Azimi-Nezhad, M.; Samini, F.; Farkhondeh, T. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol., 2016, 94(4), 388-393.
[49]
Ramírez-Espinosa, J.J.; Saldaña-Ríos, J.; García-Jiménez, S.; Villalobos-Molina, R.; Ávila-Villarreal, G.; Rodríguez-Ocampo, A.N.; Estrada-Soto, S. Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic mice. Molecules, 2017, 23(1), 67.
[50]
Paulo, L.L.; Cruz, J.C.; Zhuge, Z.; Carvalho-Galvão, A.; Brandão, M.C.; Diniz, T.F.; Montenegro, M.F. The novel organic mononitrate NDHP attenuates hypertension and endothelial dysfunction in hypertensive rats. Redox Biol., 2018, 15, 182-191.
[51]
Veerappan, R.; Malarvili, T. Chrysin pretreatment improves angiotensin system, cGMP concentration in L-NAME induced hypertensive rats. Indian J. Clin. Biochem., 2019, 34(3), 288-295.
[52]
Duarte, J.; Jiménez, R.; Villar, I.C.; Pérez-Vizcaíno, F.; Jiménez, J.; Tamargo, J. Vasorelaxant effects of the bioflavonoid chrysin in isolated rat aorta. Planta Med., 2001, 67(6), 567-569.
[53]
Villar, I.C.; Galisteo, M.; Vera, R.; O’Valle, F.; García-Saura, M.F.; Zarzuelo, A.; Duarte, J. Effects of the dietary flavonoid chrysin in isolated rat mesenteric vascular bed. J. Vasc. Res., 2004, 41(6), 509-516.
[54]
Li, X.W.; Wang, X.M.; Li, S.; Yang, J.R. Effects of chrysin (5, 7-dihydroxyflavone) on vascular remodeling in hypoxia-induced pulmonary hypertension in rats. Chin. Med., 2015, 10(1), 4.
[55]
Ajay, M.; Gilani, A.U.H.; Mustafa, M.R. Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci., 2003, 74(5), 603-612.
[56]
Calderone, V.; Chericoni, S.; Martinelli, C.; Testai, L.; Nardi, A.; Morelli, I.; Martinotti, E. Vasorelaxing effects of flavonoids: Investigation on the possible involvement of potassium channels. Naunyn Schmiedebergs Arch. Pharmacol., 2004, 370(4), 290-298.
[57]
Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Di Palma, G. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr. Atheroscler. Rep., 2014, 16(9), 435.
[58]
Singh, J.; Chaudhari, B.P.; Kakkar, P. Baicalin and chrysin mixture imparts cytoprotection against methylglyoxal induced cytotoxicity and diabetic tubular injury by modulating RAGE, oxidative stress and inflammation. Environ. Toxicol. Pharmacol., 2017, 50, 67-75.
[59]
Harris, G.K.; Qian, Y.; Leonard, S.S.; Sbarra, D.C.; Shi, X. Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J. Nutr., 2006, 136(6), 1517-1521.
[60]
Lee, S.H.; Kim, Y.J.; Kwon, S.H.; Lee, Y.H.; Choi, S.Y.; Park, J.S.; Kwon, H.J. Inhibitory effects of flavonoids on TNF-α-induced IL-8 gene expression in HEK 293 cells. BMB Reports., 2009, 42(5), 265-270.
[61]
Li, X.W.; Guo, B.; Shen, Y.Y.; Yang, J.R. Effect of chrysin on expression of NOX4 and NF-κB in right ventricle of monocrotaline-induced pulmonary arterial hypertension of rats. Yao xuexuebao=Actapharmaceutica Sinica. . 2015, 50(9), 1128-1134.
[62]
Panahi, G.; Pasalar, P.; Zare, M.; Rizzuto, R.; Meshkani, R. High glucose induces inflammatory responses in HepG2 cells via the oxidative stress-mediated activation of NF-κB, and MAPK pathways in HepG2 cells. Arch. Physiol. Biochem., 2018, 1-7.
[63]
Saum, K.; Campos, B.; Celdran‐Bonafonte, D.; Nayak, L.; Sangwung, P.; Thakar, C.; Owens, A.P. Uremic advanced glycation end products and protein‐bound solutes induce endothelial dysfunction through suppression of Krüppel‐like factor 2. J. Am. Heart Assoc., 2018, 7(1)e007566
[64]
Rani, N.; Bharti, S.; Bhatia, J.; Nag, T.C.; Ray, R.; Arya, D.S. Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation. Chem. Biol. Interact., 2016, 250, 59-67.
[65]
Yang, L.; Gao, L.; Nickel, T.; Yang, J.; Zhou, J.; Gilbertsen, A.; Gourley, G.R. Lactate promotes synthetic phenotype in vascular smooth muscle cells novelty and significance. Circ. Res., 2017, 121(11), 1251-1262.
[66]
Kappert, K. 1.; Sparwel, J.; Sandin, A.; Seiler, A.; Siebolts, U.; Leppänen, O.; Rosenkranz, S.; Ostman, A. Antioxidants relieve phosphatase inhibition and reduce PDGF signaling in cultured VSMCs and in restenosis. Arterioscler. Thromb. Vasc. Biol., 2006, 26(12), 2644-2651.
[67]
Lo, H.M.; Wu, M.W.; Pan, S.L.; Peng, C.Y.; Wu, P.H.; Wu, W.B. Chrysin restores PDGF-induced inhibition on protein tyrosine phosphatase and reduces PDGF signaling in cultured VSMCs. J. Nutr. Biochem., 2012, 23(6), 667-678.
[68]
Roe, A.; Frisk, M.; Louch, E. W. Targeting cardiomyocyte Ca2 homeostasis in heart failure. Curr. Pharm. Des., 2015, 21(4), 431-448.
[69]
Anghel, N.; Cotoraci, C.; Ivan, A.; Suciu, M.; Herman, H.; Balta, C.; Hermenean, A. Chrysin attenuates cardiomyocyte apoptosis and loss of intermediate filaments in a mouse model of mitoxantrone cardiotoxicity. Histol. Histopathol., 2015, 30(12), 1465-1475.
[70]
Davì, G.; Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med., 2007, 357(24), 2482-2494.
[71]
Gibbins, J.M. Platelet adhesion signalling and the regulation of thrombus formation. J. Cell Sci., 2004, 11(16), 3415-3425.
[72]
Vaiyapuri, S.; Ali, M.S.; Moraes, L.A.; Sage, T.; Lewis, K.R.; Jones, C.I.; Gibbins, J.M. Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling significance. Arterioscler. Thromb. Vasc. Biol., 2013, 33(12), 2740-2749.
[73]
Liu, G.; Xie, W.; He, A.D.; Da, X.W.; Liang, M.L.; Yao, G.Q.; Ming, Z.Y. Antiplatelet activity of chrysin via inhibiting platelet αIIbβ3‐mediated signaling pathway. Mol. Nutr. Food Res., 2016, 60(9), 1984-1993.
[74]
Ravishankar, D.; Salamah, M.; Attina, A.; Pothi, R.; Vallance, T.M.; Javed, M.; Shankland, K. Ruthenium-conjugated chrysin analogues modulate platelet activity, thrombus formation and haemostasis with enhanced efficacy. Sci. Rep., 2017, 7(1), 5738.
[75]
Walle, T.; Otake, Y.; Brubaker, J.; Walle, U.; Halushka, P. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol., 2001, 51, 143-146.
[76]
Saarinen, N.; Joshi, S.C.; Ahotupa, M.; Li, X.; Ämmälä, J.; Mäkelä, S.; Santti, R. No evidence for the in vivo activity of aromatase-inhibiting flavonoids. J. Steroid Biochem. Mol. Biol., 2001, 78, 213-239.
[77]
Gambelunghe, C.; Rossi, R.; Sommavilla, M.; Ferranti, C.; Rossi, R.; Ciculi, C.; Gizzi, S.; Micheletti, A.; Rufini, S. Effects of chrysin on urinary testosterone levels in human males. J. Med. Food, 2003, 6, 387-390.

© 2024 Bentham Science Publishers | Privacy Policy