Generic placeholder image

Recent Patents on Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2212-7984
ISSN (Online): 1876-1429

Research Article

Authentication of Frozen Chilean Blue Mussel (Mytilus chilensis) Commercialized in the Town of Osorno, Southern Chile, Using PCR-RFLP Analysis

Author(s): Nelson Colihueque*, René Espinoza and Margarita Parraguez

Volume 11, Issue 1, 2020

Page: [49 - 55] Pages: 7

DOI: 10.2174/2212798410666181231154406

Abstract

Background: DNA-based technologies are reliable authentication methods for food products, enabling the detection of fraud, non-intentional substitution and control of mislabeling. The Chilean blue mussel (Mytilus chilensis) is a seafood commercialized in Chile under different formats, including packages of frozen specimens. In this format, the valves of mussels are removed during processing, thus impeding identification of the product by the consumer due to the lack of external characters.

Objective: To assess the authenticity of frozen Chilean blue mussels commercialized in southern Chile, particularly in the town of Osorno.

Methods: Six commercial brands of frozen Chilean blue mussel were authenticated by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method, based on the analysis of an 18S rDNA fragment.

Results: Restriction patterns obtained indicate that three brands (50%) proved to be 100% authentic, given that all specimens contained in the package were Chilean blue mussels. The other three brands (50%) contained specimens of other commercial mytilids, particularly the cholga mussel (Aulacomya ater), in a variable percentage (12.5-50%).

Conclusion: This study based on the PCR-RFLP method provides evidence that Chilean blue mussels commercialized in a town located in southern Chile lack authenticity. This finding highlights the necessity for national producers to improve the production and/or packaging processes of this seafood. The authentication of commercial mussels is a matter of consumer interest and has been described in a recent patent on this issue that proposes an alternative methodology.

Keywords: Authentication, seafood products, Chilean blue mussel, PCR-RFLP, mislabelling, mussel aquaculture.

Graphical Abstract
[1]
López M, Mallorquín P, Vega M. Tecnologías moleculares de trazabilidad alimentaria. Madrid: Genoma España/CIBT-FGUAM 2003; pp. 1-78.
[2]
Rasmussen RS, Morrissey MT. Application of DNA-based methods to identify fish and seafood substitution on the commercial market. Compr Rev Food Sci Food Saf 2009; 8(2): 118-54.
[http://dx.doi.org/10.1111/j.1541-4337.2009.00073.x]
[3]
Rasmussen RS, Morrissey MT. DNA-based methods for the commercial fish and seafood species. Compr Rev Food Sci Food Saf 2008; 7(3): 280-95.
[http://dx.doi.org/10.1111/j.1541-4337.2008.00046.x]
[4]
Mafra I, Ferreira IMPLVO, Beatriz M, Oliveira PP. Food authentication by PCR-based methods. Eur Food Res Technol 2008; 227(3): 649-65.
[http://dx.doi.org/10.1007/s00217-007-0782-x]
[5]
Nicolè S, Negrisolo E, Eccher G, Mantovani R, Patarnello T, Erickson DL, et al. DNA barcoding as a reliable method for the authentication of commercial seafood products. Food Technol Biotechnol 2012; 50(4): 387-98.
[6]
Rego I, Martínez A, González-Tizón A, Vieites J, Leira F, Méndez J. PCR technique for identification of mussel species. J Agric Food Chem 2002; 50(7): 1780-4.
[http://dx.doi.org/10.1021/jf0110957] [PMID: 11902912]
[7]
Inoue K, Waite JH, Matsuoka M, Odo S, Harayama S. Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus. Biol Bull 1995; 189(3): 370-5.
[http://dx.doi.org/10.2307/1542155] [PMID: 8555320]
[8]
Fernandez-Tajes J, Longa A, Garcia-Gil J, Chiu YW. Alternative PCR-RFLP methods for mussel Mytilus species identification. Eur Food Res Technol 2011; 233(5): 791-6.
[http://dx.doi.org/10.1007/s00217-011-1574-x]
[9]
Toro JE. Molecular identification of four species of mussels from southern Chile by PCR-based nuclear markers: The potential use in studies involving planktonic surveys. J Shellfish Res 1998; 17(4): 1203-5.
[10]
Santaclara FJ, Espiñeira M, Cabado AG, Aldasoro A, Gonzalez-Lavín N, Vieites JM. Development of a method for the genetic identification of mussel species belonging to Mytilus, Perna, Aulacomya, and other genera. J Agric Food Chem 2006; 54(22): 8461-70.
[http://dx.doi.org/10.1021/jf061400u] [PMID: 17061822]
[11]
Bendezu IF, Slater JW, Carney BF. Identification of Mytilus spp. and Pecten maximus in Irish waters by standard PCR of the 18S rDNA gene and multiplex PCR of the 16S rDNA gene. Mar Biotechnol (NY) 2005; 7(6): 687-96.
[http://dx.doi.org/10.1007/s10126-004-0124-y] [PMID: 16206017]
[12]
Abbadi M, Marciano S, Tosi F. De Battisti C, Panzarin V, Arcangeli G, et al. Species identification of bivalve molluscs by pyrosequencing. J Sci Food Agric 2017; 97(2): 512-9.
[http://dx.doi.org/10.1002/jsfa.7754] [PMID: 27068666]
[13]
Jilberto F, Araneda C, Larraín MA. High resolution melting analysis for identification of commercially-important Mytilus species. Food Chem 2017; 229: 716-20.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.109] [PMID: 28372235]
[14]
Cespedes A, Garcia T, Carrera E, Gonzalez I, Fernandez A, Asensio L, et al. Genetic differentiation between sole (Solea solea) and Greenland halibut (Reinhardtius hippoglossoides) by PCR-RFLP analysis of a 12S rRNA gene fragment. J Sci Food Agric 2000; 80(1): 29-32.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000101)80:1<29:AID-JSFA470>3.0.CO;2-4]
[15]
Aranishi F, Okimoto T, Izumi S. Identification of gadoid species (Pisces, Gadidae) by PCR-RFLP analysis. J Appl Genet 2005; 46(1): 69-73.
[PMID: 15741666]
[16]
Larraín MAL,, Jilberto FI, Araneda CM. Set of primers and method for detecting and identifying mussel species of the genus Mytilus, using High-Resolution Melting and PCR. WO2016207857A1 (2018).
[17]
Seipp MT, Herrmann M, Wittwer CT. Automated DNA extraction, quantification, dilution, and PCR preparation for genotyping by high-resolution melting. J Biomol Tech 2010; 21(4): 163-6.
[PMID: 21119928]
[18]
Informe Sectorial Pesca y Acuicultura. Departamento de Análisis Sectorial, Subsecretaria de Pesca y Acuicultura Valparaíso, Chile:Gobierno de Chile. 2016; 1-18.
[19]
Taggart JB, Hynes RA, Prodohl PA, Ferguson A. A simplified protocol for routine total DNA isolation from salmonid fishes. J Fish Biol 1992; 40(6): 963-5.
[http://dx.doi.org/10.1111/j.1095-8649.1992.tb02641.x]
[20]
Barnes W. Thermostable DNA polymerase with enhanced thermostability and enhanced length and efficiency of primer extension.US5436149A (1995).
[21]
Haugland RP, Yue ST, Millard PJ, Roth BL. Cyclicsubstituted unsymmetrical cyanine dyes. US5436134A (1995).
[22]
Dumais M, Kusukawa N, White H. Highly derivatized agarose conformational nucleic acid separation. US5641626A (1997).
[23]
Zagal C, Hermosilla C, Riedemann A. Guide to marine invertebrates of Valdivia. 1st ed. Quebecor World Chile: Santiago de Chile . 2001; pp. 1-217.
[24]
Avendaño M, Cantillánez M, Le Pennec M, Varela C, Garcias C. Distribución temporal de larvas de Mytilus chilensis (Hupé, 1954) (Mollusca: Mytilidae), en el mar interior de Chiloé, sur de Chile. Lat Am J Aquat Res 2011; 39(3): 416-26.
[http://dx.doi.org/10.3856/vol39-issue3-fulltext-3]
[25]
Aguilera-Muñoz F, Valenzuela-Muñoz V, Gallardo-Escárate C. Authentication of commercial Chilean mollusks using ribosomal internal transcribed spacer (ITS) as specie-specific DNA marker. Gayana (Concepc) 2008; 72(2): 178-87.
[http://dx.doi.org/10.4067/S0717-65382008000200007]
[26]
Haye PA, Segovia NI, Vera R, Ángeles MDL, Gallardo-Escárate C. Authentication of commercialized crab-meat in Chile using DNA Barcoding. Food Control 2012; 25(1): 239-44.
[http://dx.doi.org/10.1016/j.foodcont.2011.10.034]
[27]
Wong EH-K, Hanner RH. DNA barcoding detects market substitution in North American seafood. Food Res Int 2008; 41(8): 828-37.
[http://dx.doi.org/10.1016/j.foodres.2008.07.005]
[28]
Khaksar R, Carlson T, Schaffner DW, Ghorashi M, Best D, Jandhyala S, et al. Unmasking seafood mislabeling in U.S. markets: DNA barcoding as a unique technology for food authentication and quality control. Food Control 2015; 56: 71-6.
[http://dx.doi.org/10.1016/j.foodcont.2015.03.007]
[29]
Mottola A, Marchetti P, Bottaro M, Pinto ADI. DNA barcoding for species identification in prepared fishery products. Albanian J Agric Sci 2014; 13: 447-53.
[30]
Nebola M, Borilova G, Kasalova J. PCR-RFLP analysis of DNA for the differentiation of fish species in seafood samples. B Vet I Pulawy 2010; 54(1): 49-53.
[31]
Barria A, Gebauer P, Molinet C. Variabilidad espacial y temporal del suministro larval de mitílidos en el Seno de Reloncaví, sur de Chile. Rev Biol Mar Oceanogr 2012; 47(3): 461-73.
[http://dx.doi.org/10.4067/S0718-19572012000300009]
[32]
Taylor MI, Fox C, Rico I, Rico C. Species-specific TaqMan probes for simultaneous identification of (Gadus morhua L.), haddock (Melanogrammus aeglefinus L.) and whiting (Merlangius merlangus L.). Mol Ecol Notes 2002; 2(4): 599-601.
[http://dx.doi.org/10.1046/j.1471-8286.2002.00269.x]
[33]
Lopez I, Pardo MA. Application of relative quantification TaqMan real-time polymerase chain reaction technology for the identification and quantification of Thunnus alalunga and Thunnus albacares. J Agric Food Chem 2005; 53(11): 4554-60.
[http://dx.doi.org/10.1021/jf0500841] [PMID: 15913324]
[34]
Chen SY, Peng XL, Lin SQ, Xu QB. Identification of Plectropomus leopardus, Promicrops lanceolatus and Cromileptes altivelis using species-specific TaqMan real-time PCR. Food Control 2018; 84: 408-12.
[http://dx.doi.org/10.1016/j.foodcont.2017.08.019]
[35]
Liu ZJ, Cordes JF. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 2004; 238(1-4): 1-37.
[http://dx.doi.org/10.1016/j.aquaculture.2004.05.027]

© 2024 Bentham Science Publishers | Privacy Policy