Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Applications of Micelles in Catalyzing Organic Reactions

Author(s): Bilal A. Bhat* and Bashir A. Shairgojray

Volume 17, Issue 3, 2020

Page: [289 - 296] Pages: 8

DOI: 10.2174/1570193X16666181228112834

Price: $65

Abstract

Micellar chemistry is gaining considerable interest among organic chemists because these reactions are carried out in environmentally benign solvents like water. Owing to the exhaustive use of toxic solvents in carrying out the different chemical reactions, there is a pressing need for alternative approaches either environmental friendly or having minimum impact on the environment. In this article, we aim to discuss the various aspects of micellar chemistry viz-a-viz its role in guiding the chemical reactions. Micelles help to drive various kinds of organic reactions including oxidations, reductions, carbon-carbon bond formation, carbon-heteroatom bond formation, multi-component reactions, Pd-coupling reaction, olefin metathesis reaction, Morita-Baylis-Hillman reaction, etc. in water.

Keywords: C-C bond formation reactions, micellar catalysis, Morita-Baylis-Hillman reaction, organic reactions, oxidationreduction reactions, surfactants.

Graphical Abstract
[1]
Moroi, Y. Micelles Theoretical and Applied Aspects; Plenum Press: New York, 1992, pp. 1-5.
[2]
Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena, 4th ed; John Wiley & Sons, Inc.: New Jersey, 2012, pp. 1-38.
[3]
Nagarajan, R. Molecular theory for mixed micelles. Langmuir, 1985, 1, 331-341.
[http://dx.doi.org/10.1021/la00063a012]
[4]
Ray, G.B.; Chakraborty, I.; Ghosh, S.; Moulik, S.P. Physicoche-mical studies on the interfacial and bulk behaviors of sodium N‐dodecanoyl sarcosinate (SDDS). Colloid Polym. Sci., 2007, 285, 457-469.
[http://dx.doi.org/10.1007/s11743-008-1105-3]
[5]
Velinova, M.; Sengupta, D.; Tadjer, A.V.; Marrink, S.J. Sphere-to-rod transitions of nonionic surfactant micelles in aqueous solution modeled by molecular dynamics simulations. Langmuir, 2011, 27, 14071-14077.
[http://dx.doi.org/10.1021/la203055t] [PMID: 21981373]
[6]
Porte, G.; Poggi, Y.; Appell, J.; Maret, G. Large micelles in concentrated solutions. The second critical micellar concentration. J. Phys. Chem., 1984, 88, 5713-5720.
[7]
Nisticò, R.; Avetta, P.; Calza, P.; Fabbri, D.; Magnacca, G.; Scalarone, D. Selective porous gates made from colloidal silica nanoparticles. Beilstein J. Nanotechnol., 2015, 6, 2105-2112.
[http://dx.doi.org/10.3762/bjnano.6.215]
[8]
Goyal, P.S.; Aswal, V.K. Small-angle neutron scattering diffractometer at Dhruva reactor. Curr. Sci., 2001, 80, 972-979.
[9]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100, 1025-1074.
[10]
Watanabe, H. Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci., 1999, 24, 1253-1403.
[http://dx.doi.org/10.1016/S0079-6700(99)00029-5]
[11]
Kaupp, G. Mechanochemistry: The varied applications of mechanical bond-breaking. CrystEngComm, 2009, 11, 388-403.
[12]
Romney, D.K.; Arnold, F.H.; Lipshutz, B.H.; Li, C-J. Chemistry takes a bath: Reactions in aqueous media. J. Org. Chem., 2018, 83, 7319-7322.
[http://dx.doi.org/10.1021/acs.joc.8b01412]
[13]
Lipshutz, B.H.; Ghorai, S.; Cortes-Clerget, M. The hydrophobic effect applied to organic synthesis: Recent synthetic chemistry “in water”. Chem. Eur. J., 2018, 24, 6672-6695.
[http://dx.doi.org/10.1002/chem.201705499]
[14]
Erni, P.; Fischer, P.; Windhab, E.J. Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Langmuir, 2005, 21, 10555-10563.
[http://dx.doi.org/10.1063/1.1614433]
[15]
De Martino, M.T.; Abdelmohsen, L.K.E.A.; Rutjes, F.P.J.T.; van Hest, J.C.M. Nanoreactors for green catalysis. Beilstein J. Org. Chem., 2018, 14, 716-733.
[http://dx.doi.org/10.3762/bjoc.14.61] [PMID: 29719570]
[16]
Lin, Z. Branched worm-like micelles and their networks. Langmuir, 1996, 12, 1729-1727.
[http://dx.doi.org/10.1021/la950570q]
[17]
Meyers, D. Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd Edition.; Wiley-VCH: Weinheim, 1999.
[18]
Sorella, G.L.; Strukul, G.; Scarso, A. Recent advances in catalysis in micellar media. Green Chem., 2015, 17, 644-683.
[19]
Dar, A.A.; Rather, G.M.; Ghosh, S.; Das, A.R. Micellization and interfacial behavior of binary and ternary mixtures of model cationic and nonionic surfactants in aqueous NaCl medium. J. Colloid Interface Sci., 2008, 322, 572-581.
[http://dx.doi.org/10.1016/j.jcis.2008.03.022]
[20]
Das, D.; Roy, S.; Das, P.K. Efficient and simple NaBH4 reduction of esters at cationic micellar surface. Org. Lett., 2004, 6, 4133-4136.
[http://dx.doi.org/10.1021/ol0481176] [PMID: 15496117]
[21]
Pinaka, A.; Vougioukalakis, G.C.; Dimotikali, D.; Yannakopoulou, E.; Chankvetadze, B.; Papadopoulos, K. Green asymmetric synthesis: β-amino alcohol-catalyzed direct asymmetric aldol reactions in aqueous micelles. Chirality, 2013, 25, 119-125.
[22]
Hao, X.; Xu, Z.; Lu, H.; Dai, X.; Yang, T.; Lin, X.; Ren, F. Mild and regioselective N-alkylation of 2-pyridones in water. Org. Lett., 2015, 17, 3382-3385.
[http://dx.doi.org/10.1021/acs.orglett.5b01628]
[23]
Rajabi, F.; Luque, R. An efficient renewable-derived surfactant for aqueous esterification reactions. RSC Adv., 2014, 4, 5152-5155.
[http://dx.doi.org/10.1039/C3RA45757E]
[24]
Ghosh, P.P.; Mukherjee, P.; Das, A.R. Triton-X-100 catalyzed synthesis of 1,4-dihydropyridines and their aromatization to pyridines and a new one pot synthesis of pyridines using visible light in aqueous media. RSC Advances, 2013, 3, 8220-8226.
[http://dx.doi.org/10.1039/C3RA40706C]
[25]
Kumar, D.; Seth, K.; Kommi, D.N.; Bhagat, S.; Chakraborti, A.K. Surfactant micelles as microreactors for the synthesis of quinoxalines in water: Scope and limitations of surfactant catalysis. RSC Advances, 2013, 3, 15157-15168.
[http://dx.doi.org/10.1039/C3RA41038B]
[26]
Reddy, K.R.; Rajanna, K.C.; Uppalaiah, K. Environmentally benign contemporary Friedel-Crafts acylation of 1-halo-2-methoxynaphthalenes and its related compounds under conventional and nonconventional conditions. Tetrahedron Lett., 2013, 54, 3431-3426.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.075]
[27]
Lu, G.P.; Cai, C. An odorless, one‐pot synthesis of thioesters from organic halides, thiourea and benzoyl chlorides in water. Adv. Synth. Catal., 2013, 355, 1271-1276.
[http://dx.doi.org/10.1002/adsc.201201059]
[28]
Saha, R.; Ghosh, A.; Saha, B. Kinetics of micellar catalysis on oxidation of p-anisaldehyde to p-anisic acid in aqueous medium at room temperature. Chem. Eng. Sci., 2013, 99, 23-27.
[http://dx.doi.org/10.1016/j.ces.2013.05.043]
[29]
Li, X.H.; Meng, X.G.; Pang, Q.H.; Liu, S.D.; Li, J.M.; Du, J.; Hu, C.W. Metal complexes catalyzed oxidative coupling of 2,6-dimethylphenol in micellar media. J. Mol. Cat. A,. Chem., 2010, 328, 88-92.
[http://dx.doi.org/10.1016/j.molcata.2010.06.003]
[30]
Duplais, C.; Krasovskiy, A.; Lipshutz, B.H. Organozinc chemistry enabled by micellar catalysis. Palladium-catalyzed cross-couplings between alkyl and aryl bromides in water at room temperature. Organometallics, 2011, 30, 6090-6097.
[http://dx.doi.org/10.1021/om200846h] [PMID: 23539206]
[31]
Lipshutz, B.H.; Taft, B.R. Heck couplings at room temperature in nanometer aqueous micelles. Org. Lett., 2008, 10, 1329-1332.
[http://dx.doi.org/10.1021/ol702755g]
[32]
Lipshutz, B.H.; Abela, A.R. Micellar catalysis of Suzuki-Miyaura cross-couplings with heteroaromatics in water. Org. Lett., 2008, 10, 5329-5332.
[http://dx.doi.org/10.1021/ol801712e]
[33]
Lipshutz, B.H.; Chung, D.W.; Rich, B. Sonogashira couplings of aryl bromides: room temperature, water only, no copper. Org. Lett., 2008, 10, 3793-3796.
[http://dx.doi.org/10.1021/ol801471f]
[34]
Lipshutz, B.H.; Aguinaldo, G.T.; Ghorai, S.; Voigtritter, K. Olefin cross-metathesis reactions at room temperature using the nonionic amphiphile “PTS”: just add water. Org. Lett., 2008, 10, 1325-1328.
[http://dx.doi.org/10.1021/ol800028x]
[35]
Shairgojray, B.A.; Dar, A.A.; Bhat, B.A. Micellar promiscuity: An expeditious approach to Morita-Baylis-Hillman reaction. Tetrahedron Lett., 2013, 54, 2391-2394.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.097]
[36]
Shairgojray, B.A.; Dar, A.A.; Bhat, B.A. Cationic chiral surfactant based micelle-guided asymmetric Morita-Baylis-Hillman reaction. Catal. Commun., 2016, 83, 58-61.
[http://dx.doi.org/10.1016/j.catcom.2016.05.010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy