Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Molecular Mechanisms and Targeted Therapies Including Immunotherapy for Non-Small Cell Lung Cancer

Author(s): Tatsuya Nagano*, Motoko Tachihara and Yoshihiro Nishimura

Volume 19, Issue 8, 2019

Page: [595 - 630] Pages: 36

DOI: 10.2174/1568009619666181210114559

Price: $65

Abstract

Lung cancer is the leading cause of cancer death worldwide. Molecular targeted therapy has greatly advanced the field of treatment for non-small cell lung cancer (NSCLC), which accounts for the majority of lung cancers. Indeed, gefitinib, which was the first molecular targeted therapeutic agent, has actually doubled the survival time of NSCLC patients. Vigorous efforts of clinicians and researchers have revealed that lung cancer develops through the activating mutations of many driver genes including the epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1), v-Raf murine sarcoma viral oncogene homolog B (BRAF), and rearranged during transfection (RET) genes. Although ALK, ROS1, and RET are rare genetic abnormalities, corresponding tyrosine kinase inhibitors (TKIs) can exert dramatic therapeutic effects. In addition to anticancer drugs targeting driver genes, bevacizumab specifically binds to human vascular endothelial growth factor (VEGF) and blocks the VEGF signaling pathway. The VEGF signal blockade suppresses angiogenesis in tumor tissues and inhibits tumor growth. In this review, we also explore immunotherapy, which is a promising new NSCLC treatment approach. In general, antitumor immune responses are suppressed in cancer patients, and cancer cells escape from the immune surveillance mechanism. Immune checkpoint inhibitors (ICIs) are antibodies that target the primary escape mechanisms, immune checkpoints. Patients who respond to ICIs are reported to experience longlasting therapeutic effects. A wide range of clinical approaches, including combination therapy involving chemotherapy or radiation plus adjuvant therapy, are being developed.

Keywords: Non-small cell lung cancer, EGFR, ALK, ROS-1, BRAF, RET, VEGF, Immune checkpoint inhibitor.

Next »
Graphical Abstract
[1]
Minamoto, T.; Mai, M.; Ronai, Z. Environmental factors as regulators and effectors of multistep carcinogenesis. Carcinogenesis, 1999, 20(4), 519-527.
[2]
Pao, W.; Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol., 2011, 12(2), 175-180.
[3]
Wang, R.; Wang, L.; Li, Y.; Hu, H.; Shen, L.; Shen, X.; Pan, Y.; Ye, T.; Zhang, Y.; Luo, X.; Pan, B.; Li, B.; Li, H.; Zhang, J.; Pao, W.; Ji, H.; Sun, Y.; Chen, H. FGFR1/3 tyrosine kinase fusions define a unique molecular subtype of non-small cell lung cancer. Clin. Cancer Res., 2014, 20(15), 4107-4114.
[4]
Kim, H.S.; Park, K.; Jun, H.J.; Yi, S.Y.; Lee, J.; Ahn, J.S.; Park, Y.H.; Kim, S.; Lee, S.; Ahn, M.J. Comparison of survival in advanced non-small cell lung cancer patients in the pre and post-gefitinib eras. Oncology, 2009, 76(4), 239-246.
[5]
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; Louis, D.N.; Christiani, D.C.; Settleman, J.; Haber, D.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(21), 2129-2139.
[6]
Shepherd, F.A.; Rodrigues Pereira, J.; Ciuleanu, T.; Tan, E.H.; Hirsh, V.; Thongprasert, S.; Campos, D.; Maoleekoonpiroj, S.; Smylie, M.; Martins, R.; van Kooten, M.; Dediu, M.; Findlay, B.; Tu, D.; Johnston, D.; Bezjak, A.; Clark, G.; Santabárbara, P.; Seymour, L. Group, N. C. I. o. C. C. T. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med., 2005, 353(2), 123-132.
[7]
Park, K.; Tan, E.H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.; Lee, K.H.; Lu, S.; Shi, Y.; Kim, S.W.; Laskin, J.; Kim, D.W.; Arvis, C.D.; Kölbeck, K.; Laurie, S.A.; Tsai, C.M.; Shahidi, M.; Kim, M.; Massey, D.; Zazulina, V.; Paz-Ares, L. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol., 2016, 17(5), 577-589.
[8]
Cross, D.A.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.; Ward, R.A.; Mellor, M.J.; Hughes, G.; Rahi, A.; Jacobs, V.N.; Red Brewer, M.; Ichihara, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G.H.; Cantarini, M.; Kim, D.W.; Ranson, M.R.; Pao, W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov., 2014, 4(9), 1046-1061.
[9]
Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; Okamoto, I.; Zhou, C.; Cho, B.C.; Cheng, Y.; Cho, E.K.; Voon, P.J.; Planchard, D.; Su, W.C.; Gray, J.E.; Lee, S.M.; Hodge, R.; Marotti, M.; Rukazenkov, Y.; Ramalingam, S.S.; Investigators, F. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med., 2018, 378(2), 113-125.
[10]
Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; Wu, Y.L.; Thomas, M.; O’Byrne, K.J.; Moro-Sibilot, D.; Camidge, D.R.; Mok, T.; Hirsh, V.; Riely, G.J.; Iyer, S.; Tassell, V.; Polli, A.; Wilner, K.D.; Jänne, P.A. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med., 2013, 368(25), 2385-2394.
[11]
Bergethon, K.; Shaw, A.T.; Ou, S.H.; Katayama, R.; Lovly, C.M.; McDonald, N.T.; Massion, P.P.; Siwak-Tapp, C.; Gonzalez, A.; Fang, R.; Mark, E.J.; Batten, J.M.; Chen, H.; Wilner, K.D.; Kwak, E.L.; Clark, J.W.; Carbone, D.P.; Ji, H.; Engelman, J.A.; Mino-Kenudson, M.; Pao, W.; Iafrate, A.J. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol., 2012, 30(8), 863-870.
[12]
Kohno, T.; Tsuta, K.; Tsuchihara, K.; Nakaoku, T.; Yoh, K.; Goto, K. RET fusion gene: translation to personalized lung cancer therapy. Cancer Sci., 2013, 104(11), 1396-1400.
[13]
Planchard, D.; Besse, B.; Groen, H.J.M.; Souquet, P.J.; Quoix, E.; Baik, C.S.; Barlesi, F.; Kim, T.M.; Mazieres, J.; Novello, S.; Rigas, J.R.; Upalawanna, A.; D’Amelio, A.M.; Zhang, P.; Mookerjee, B.; Johnson, B.E. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol., 2016, 17(7), 984-993.
[14]
Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.W.; Ou, S.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; Zeaiter, A.; Mitry, E.; Golding, S.; Balas, B.; Noe, J.; Morcos, P.N.; Mok, T.; Investigators, A.T. Alectinib Versus Crizotinib In Untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med., 2017, 377(9), 829-838.
[15]
Shaw, A.T.; Kim, D.W.; Mehra, R.; Tan, D.S.; Felip, E.; Chow, L.Q.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G.J.; Solomon, B.J.; Wolf, J.; Thomas, M.; Schuler, M.; Liu, G.; Santoro, A.; Lau, Y.Y.; Goldwasser, M.; Boral, A.L.; Engelman, J.A. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med., 2014, 370(13), 1189-1197.
[16]
Shaw, A.T.; Friboulet, L.; Leshchiner, I.; Gainor, J.F.; Bergqvist, S.; Brooun, A.; Burke, B.J.; Deng, Y.L.; Liu, W.; Dardaei, L.; Frias, R.L.; Schultz, K.R.; Logan, J.; James, L.P.; Smeal, T.; Timofeevski, S.; Katayama, R.; Iafrate, A.J.; Le, L.; McTigue, M.; Getz, G.; Johnson, T.W.; Engelman, J.A. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med., 2016, 374(1), 54-61.
[17]
Brown, L.F.; Detmar, M.; Claffey, K.; Nagy, J.A.; Feng, D.; Dvorak, A.M.; Dvorak, H.F. Vascular permeability factor/vascular endothelial growth factor: A multifunctional angiogenic cytokine. EXS, 1997, 79, 233-269.
[18]
Dvorak, H.F.; Brown, L.F.; Detmar, M.; Dvorak, A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol., 1995, 146(5), 1029-1039.
[19]
Reinmuth, N.; Parikh, A.A.; Ahmad, S.A.; Liu, W.; Stoeltzing, O.; Fan, F.; Takeda, A.; Akagi, M.; Ellis, L.M. Biology of angiogenesis in tumors of the gastrointestinal tract. Microsc. Res. Tech., 2003, 60(2), 199-207.
[20]
Rafii, S.; Lyden, D.; Benezra, R.; Hattori, K.; Heissig, B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer, 2002, 2(11), 826-835.
[21]
Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med., 2006, 355(24), 2542-2550.
[22]
Garon, E.B.; Ciuleanu, T.E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; Czyzewicz, G.; Orlov, S.V.; Lewanski, C.R.; Thomas, M.; Bidoli, P.; Dakhil, S.; Gans, S.; Kim, J.H.; Grigorescu, A.; Karaseva, N.; Reck, M.; Cappuzzo, F.; Alexandris, E.; Sashegyi, A.; Yurasov, S.; Pérol, M. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): A multicentre, double-blind, randomised phase 3 trial. Lancet, 2014, 384(9944), 665-673.
[23]
Ribas, A. Releasing the brakes on cancer immunotherapy. N. Engl. J. Med., 2015, 373(16), 1490-1492.
[24]
Walker, L.S.; Sansom, D.M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol., 2011, 11(12), 852-863.
[25]
Teft, W.A.; Kirchhof, M.G.; Madrenas, J. A molecular perspective of CTLA-4 function. Annu. Rev. Immunol., 2006, 24, 65-97.
[26]
Forde, P.M.; Ettinger, D.S. Targeted therapy for non-small-cell lung cancer: past, present and future. Expert Rev. Anticancer Ther., 2013, 13(6), 745-758.
[27]
Nascimento, A.V.; Bousbaa, H.; Ferreira, D.; Sarmento, B. Non-small cell lung carcinoma: An overview on targeted therapy. Curr. Drug Targets, 2015, 16(13), 1448-1463.
[28]
Chan, B.A.; Hughes, B.G. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl. Lung Cancer Res., 2015, 4(1), 36-54.
[29]
Hirsch, F.R.; Jänne, P.A.; Eberhardt, W.E.; Cappuzzo, F.; Thatcher, N.; Pirker, R.; Choy, H.; Kim, E.S.; Paz-Ares, L.; Gandara, D.R.; Wu, Y.L.; Ahn, M.J.; Mitsudomi, T.; Shepherd, F.A.; Mok, T.S. Epidermal growth factor receptor inhibition in lung cancer: Status 2012. J. Thorac. Oncol., 2013, 8(3), 373-384.
[30]
Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500.
[31]
Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishiwaki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361(10), 947-957.
[32]
Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566.
[33]
Shaw, A.T.; Ou, S.H.; Bang, Y.J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; Doebele, R.C.; Le, L.P.; Zheng, Z.; Tan, W.; Stephenson, P.; Shreeve, S.M.; Tye, L.M.; Christensen, J.G.; Wilner, K.D.; Clark, J.W.; Iafrate, A.J. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med., 2014, 371(21), 1963-1971.
[34]
Kris, M.G.; Johnson, B.E.; Berry, L.D.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Varella-Garcia, M.; Franklin, W.A.; Aronson, S.L.; Su, P.F.; Shyr, Y.; Camidge, D.R.; Sequist, L.V.; Glisson, B.S.; Khuri, F.R.; Garon, E.B.; Pao, W.; Rudin, C.; Schiller, J.; Haura, E.B.; Socinski, M.; Shirai, K.; Chen, H.; Giaccone, G.; Ladanyi, M.; Kugler, K.; Minna, J.D.; Bunn, P.A. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA, 2014, 311(19), 1998-2006.
[35]
Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; Lee, C.K.; Sebastian, M.; Templeton, A.; Mann, H.; Marotti, M.; Ghiorghiu, S.; Papadimitrakopoulou, V.A.; Investigators, A. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med., 2017, 376(7), 629-640.
[36]
Choi, Y.L.; Soda, M.; Yamashita, Y.; Ueno, T.; Takashima, J.; Nakajima, T.; Yatabe, Y.; Takeuchi, K.; Hamada, T.; Haruta, H.; Ishikawa, Y.; Kimura, H.; Mitsudomi, T.; Tanio, Y.; Mano, H.; Group, A.L.C.S. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med., 2010, 363(18), 1734-1739.
[37]
Gainor, J.F.; Dardaei, L.; Yoda, S.; Friboulet, L.; Leshchiner, I.; Katayama, R.; Dagogo-Jack, I.; Gadgeel, S.; Schultz, K.; Singh, M.; Chin, E.; Parks, M.; Lee, D.; DiCecca, R.H.; Lockerman, E.; Huynh, T.; Logan, J.; Ritterhouse, L.L.; Le, L.P.; Muniappan, A.; Digumarthy, S.; Channick, C.; Keyes, C.; Getz, G.; Dias-Santagata, D.; Heist, R.S.; Lennerz, J.; Sequist, L.V.; Benes, C.H.; Iafrate, A.J.; Mino-Kenudson, M.; Engelman, J.A.; Shaw, A.T. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in alk-rearranged lung cancer. Cancer Discov., 2016, 6(10), 1118-1133.
[38]
Hida, T.; Nokihara, H.; Kondo, M.; Kim, Y.H.; Azuma, K.; Seto, T.; Takiguchi, Y.; Nishio, M.; Yoshioka, H.; Imamura, F.; Hotta, K.; Watanabe, S.; Goto, K.; Satouchi, M.; Kozuki, T.; Shukuya, T.; Nakagawa, K.; Mitsudomi, T.; Yamamoto, N.; Asakawa, T.; Asabe, R.; Tanaka, T.; Tamura, T. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet, 2017, 390(10089), 29-39.
[39]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[40]
Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, 5(5), 341-354.
[41]
Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075.
[42]
Akula, S.; Kamasani, S.; Sivan, S.K.; Manga, V.; Vudem, D.R.; Kancha, R.K. Computational analysis of epidermal growth factor receptor mutations predicts differential drug sensitivity profiles toward kinase inhibitors. J. Thorac. Oncol., 2018, 13(5), 721-726.
[43]
Takano, T.; Ohe, Y.; Sakamoto, H.; Tsuta, K.; Matsuno, Y.; Tateishi, U.; Yamamoto, S.; Nokihara, H.; Yamamoto, N.; Sekine, I.; Kunitoh, H.; Shibata, T.; Sakiyama, T.; Yoshida, T.; Tamura, T. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol., 2005, 23(28), 6829-6837.
[44]
Kobayashi, S.; Canepa, H.M.; Bailey, A.S.; Nakayama, S.; Yamaguchi, N.; Goldstein, M.A.; Huberman, M.S.; Costa, D.B. Compound EGFR mutations and response to EGFR tyrosine kinase inhibitors. J. Thorac. Oncol., 2013, 8(1), 45-51.
[45]
Mitsudomi, T.; Kosaka, T.; Endoh, H.; Horio, Y.; Hida, T.; Mori, S.; Hatooka, S.; Shinoda, M.; Takahashi, T.; Yatabe, Y. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J. Clin. Oncol., 2005, 23(11), 2513-2520.
[46]
Chan, S.K.; Gullick, W.J.; Hill, M.E. Mutations of the epidermal growth factor receptor in non-small cell lung cancer- search and destroy. Eur. J. Cancer, 2006, 42(1), 17-23.
[47]
Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2005, 352(8), 786-792.
[48]
Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med., 2005, 2(3), e73.
[49]
Sheng, M.; Wang, F.; Zhao, Y.; Li, S.; Wang, X.; Shou, T.; Luo, Y.; Tang, W. Comparison of clinical outcomes of patients with non-small-cell lung cancer harbouring epidermal growth factor receptor exon 19 or exon 21 mutations after tyrosine kinase inhibitors treatment: a meta-analysis. Eur. J. Clin. Pharmacol., 2016, 72(1), 1-11.
[50]
Eck, M.J.; Yun, C.H. Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung cancer. Biochim. Biophys. Acta, 2010, 1804(3), 559-566.
[51]
Carey, K.D.; Garton, A.J.; Romero, M.S.; Kahler, J.; Thomson, S.; Ross, S.; Park, F.; Haley, J.D.; Gibson, N.; Sliwkowski, M.X. Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Res., 2006, 66(16), 8163-8171.
[52]
Cho, J.; Chen, L.; Sangji, N.; Okabe, T.; Yonesaka, K.; Francis, J.M.; Flavin, R.J.; Johnson, W.; Kwon, J.; Yu, S.; Greulich, H.; Johnson, B.E.; Eck, M.J.; Jänne, P.A.; Wong, K.K.; Meyerson, M. Cetuximab response of lung cancer-derived EGF receptor mutants is associated with asymmetric dimerization. Cancer Res., 2013, 73(22), 6770-6779.
[53]
Okabe, T.; Okamoto, I.; Tamura, K.; Terashima, M.; Yoshida, T.; Satoh, T.; Takada, M.; Fukuoka, M.; Nakagawa, K. Differential constitutive activation of the epidermal growth factor receptor in non-small cell lung cancer cells bearing EGFR gene mutation and amplification. Cancer Res., 2007, 67(5), 2046-2053.
[54]
Oxnard, G.R.; Lo, P.C.; Nishino, M.; Dahlberg, S.E.; Lindeman, N.I.; Butaney, M.; Jackman, D.M.; Johnson, B.E.; Jänne, P.A. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J. Thorac. Oncol., 2013, 8(2), 179-184.
[55]
Pan, Y.; Zhang, Y.; Li, Y.; Hu, H.; Wang, L.; Li, H.; Wang, R.; Ye, T.; Luo, X.; Li, B.; Cai, D.; Shen, L.; Sun, Y.; Chen, H. Prevalence, clinicopathologic characteristics, and molecular associations of EGFR exon 20 insertion mutations in East Asian patients with lung adenocarcinoma. Ann. Surg. Oncol., 2014, 21(Suppl. 4), S490-S496.
[56]
Beau-Faller, M.; Prim, N.; Ruppert, A.M.; Nanni-Metéllus, I.; Lacave, R.; Lacroix, L.; Escande, F.; Lizard, S.; Pretet, J.L.; Rouquette, I.; de Crémoux, P.; Solassol, J.; de Fraipont, F.; Bièche, I.; Cayre, A.; Favre-Guillevin, E.; Tomasini, P.; Wislez, M.; Besse, B.; Legrain, M.; Voegeli, A.C.; Baudrin, L.; Morin, F.; Zalcman, G.; Quoix, E.; Blons, H.; Cadranel, J. Rare EGFR exon 18 and exon 20 mutations in non-small-cell lung cancer on 10 117 patients: a multicentre observational study by the French ERMETIC-IFCT network. Ann. Oncol., 2014, 25(1), 126-131.
[57]
Naidoo, J.; Sima, C.S.; Rodriguez, K.; Busby, N.; Nafa, K.; Ladanyi, M.; Riely, G.J.; Kris, M.G.; Arcila, M.E.; Yu, H.A. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer, 2015, 121(18), 3212-3220.
[58]
Yasuda, H.; Park, E.; Yun, C.H.; Sng, N.J.; Lucena-Araujo, A.R.; Yeo, W.L.; Huberman, M.S.; Cohen, D.W.; Nakayama, S.; Ishioka, K.; Yamaguchi, N.; Hanna, M.; Oxnard, G.R.; Lathan, C.S.; Moran, T.; Sequist, L.V.; Chaft, J.E.; Riely, G.J.; Arcila, M.E.; Soo, R.A.; Meyerson, M.; Eck, M.J.; Kobayashi, S.S.; Costa, D.B. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci. Transl. Med., 2013, 5(216), 216ra177.
[59]
Voon, P.J.; Tsui, D.W.; Rosenfeld, N.; Chin, T.M. EGFR exon 20 insertion A763-Y764insFQEA and response to erlotinib-letter. Mol. Cancer Ther., 2013, 12(11), 2614-2615.
[60]
Woo, H.S.; Ahn, H.K.; Lee, H.Y.; Park, I.; Kim, Y.S.; Hong, J.; Sym, S.J.; Park, J.; Lee, J.H.; Shin, D.B.; Cho, E.K. Epidermal growth factor receptor (EGFR) exon 20 mutations in non-small-cell lung cancer and resistance to EGFR-tyrosine kinase inhibitors. Invest. New Drugs, 2014, 32(6), 1311-1315.
[61]
Yasuda, H.; Kobayashi, S.; Costa, D.B. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol., 2012, 13(1), e23-e31.
[62]
Yang, J.C.; Sequist, L.V.; Geater, S.L.; Tsai, C.M.; Mok, T.S.; Schuler, M.; Yamamoto, N.; Yu, C.J.; Ou, S.H.; Zhou, C.; Massey, D.; Zazulina, V.; Wu, Y.L. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol., 2015, 16(7), 830-838.
[63]
Kim, E.Y.; Cho, E.N.; Park, H.S.; Hong, J.Y.; Lim, S.; Youn, J.P.; Hwang, S.Y.; Chang, Y.S. Compound EGFR mutation is frequently detected with co-mutations of actionable genes and associated with poor clinical outcome in lung adenocarcinoma. Cancer Biol. Ther., 2016, 17(3), 237-245.
[64]
Hsu, F.; De Caluwe, A.; Anderson, D.; Nichol, A.; Toriumi, T.; Ho, C. Patterns of spread and prognostic implications of lung cancer metastasis in an era of driver mutations. Curr. Oncol., 2017, 24(4), 228-233.
[65]
Jain, A.; Lim, C.; Gan, E.M.; Ng, D.Z.; Ng, Q.S.; Ang, M.K.; Takano, A.; Chan, K.S.; Tan, W.M.; Kanesvaran, R.; Toh, C.K.; Loo, C.M.; Hsu, A.A.; Devanand, A.; Lim, C.H.; Koong, H.N.; Koh, T.; Fong, K.W.; Yap, S.P.; Kim, S.W.; Chowbay, B.; Oon, L.; Lim, K.H.; Lim, W.T.; Tan, E.H.; Tan, D.S. Impact of smoking and brain metastasis on outcomes of advanced EGFR mutation lung adenocarcinoma patients treated with first line epidermal Growth Factor receptor tyrosine kinase inhibitors. PLoS One, 2015, 10(5), e0123587.
[66]
Kato, T.; Yoshioka, H.; Okamoto, I.; Yokoyama, A.; Hida, T.; Seto, T.; Kiura, K.; Massey, D.; Seki, Y.; Yamamoto, N. Afatinib versus cisplatin plus pemetrexed in Japanese patients with advanced non-small cell lung cancer harboring activating EGFR mutations: Subgroup analysis of LUX-Lung 3. Cancer Sci., 2015, 106(9), 1202-1211.
[67]
Omuro, A.M.; Kris, M.G.; Miller, V.A.; Franceschi, E.; Shah, N.; Milton, D.T.; Abrey, L.E. High incidence of disease recurrence in the brain and leptomeninges in patients with nonsmall cell lung carcinoma after response to gefitinib. Cancer, 2005, 103(11), 2344-2348.
[68]
Iuchi, T.; Shingyoji, M.; Sakaida, T.; Hatano, K.; Nagano, O.; Itakura, M.; Kageyama, H.; Yokoi, S.; Hasegawa, Y.; Kawasaki, K.; Iizasa, T. Phase II trial of gefitinib alone without radiation therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma. Lung Cancer, 2013, 82(2), 282-287.
[69]
Schuler, M.; Wu, Y.L.; Hirsh, V.; O’Byrne, K.; Yamamoto, N.; Mok, T.; Popat, S.; Sequist, L.V.; Massey, D.; Zazulina, V.; Yang, J.C. First-line afatinib versus chemotherapy in patients with non-small cell lung cancer and common epidermal growth factor receptor gene mutations and brain metastases. J. Thorac. Oncol., 2016, 11(3), 380-390.
[70]
Heon, S.; Yeap, B.Y.; Britt, G.J.; Costa, D.B.; Rabin, M.S.; Jackman, D.M.; Johnson, B.E. Development of central nervous system metastases in patients with advanced non-small cell lung cancer and somatic EGFR mutations treated with gefitinib or erlotinib. Clin. Cancer Res., 2010, 16(23), 5873-5882.
[71]
Togashi, Y.; Masago, K.; Fukudo, M.; Terada, T.; Fujita, S.; Irisa, K.; Sakamori, Y.; Kim, Y.H.; Mio, T.; Inui, K.; Mishima, M. Cerebrospinal fluid concentration of erlotinib and its active metabolite OSI-420 in patients with central nervous system metastases of non-small cell lung cancer. J. Thorac. Oncol., 2010, 5(7), 950-955.
[72]
Togashi, Y.; Masago, K.; Masuda, S.; Mizuno, T.; Fukudo, M.; Ikemi, Y.; Sakamori, Y.; Nagai, H.; Kim, Y.H.; Katsura, T.; Mishima, M. Cerebrospinal fluid concentration of gefitinib and erlotinib in patients with non-small cell lung cancer. Cancer Chemother. Pharmacol., 2012, 70(3), 399-405.
[73]
Tamiya, A.; Tamiya, M.; Nishihara, T.; Shiroyama, T.; Nakao, K.; Tsuji, T.; Takeuchi, N.; Isa, S.I.; Omachi, N.; Okamoto, N.; Suzuki, H.; Okishio, K.; Iwazaki, A.; Imai, K.; Hirashima, T.; Atagi, S. Cerebrospinal fluid penetration rate and efficacy of afatinib in patients with EGFR mutation-positive non-small cell lung cancer with leptomeningeal carcinomatosis: A multicenter prospective study. Anticancer Res., 2017, 37(8), 4177-4182.
[74]
Ballard, P.; Yates, J.W.; Yang, Z.; Kim, D.W.; Yang, J.C.; Cantarini, M.; Pickup, K.; Jordan, A.; Hickey, M.; Grist, M.; Box, M.; Johnström, P.; Varnäs, K.; Malmquist, J.; Thress, K.S.; Jänne, P.A.; Cross, D. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-Mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin. Cancer Res., 2016, 22(20), 5130-5140.
[75]
Nagai, Y.; Miyazawa, H. Huqun; Tanaka, T.; Udagawa, K.; Kato, M.; Fukuyama, S.; Yokote, A.; Kobayashi, K.; Kanazawa, M.; Hagiwara, K. Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res., 2005, 65(16), 7276-7282.
[76]
Kawada, I.; Soejima, K.; Watanabe, H.; Nakachi, I.; Yasuda, H.; Naoki, K.; Kawamura, M.; Eguchi, K.; Kobayashi, K.; Ishizaka, A. An alternative method for screening EGFR mutation using RFLP in non-small cell lung cancer patients. J. Thorac. Oncol., 2008, 3(10), 1096-1103.
[77]
Endo, K.; Konishi, A.; Sasaki, H.; Takada, M.; Tanaka, H.; Okumura, M.; Kawahara, M.; Sugiura, H.; Kuwabara, Y.; Fukai, I.; Matsumura, A.; Yano, M.; Kobayashi, Y.; Mizuno, K.; Haneda, H.; Suzuki, E.; Iuchi, K.; Fujii, Y. Epidermal growth factor receptor gene mutation in non-small cell lung cancer using highly sensitive and fast TaqMan PCR assay. Lung Cancer, 2005, 50(3), 375-384.
[78]
Yatabe, Y.; Hida, T.; Horio, Y.; Kosaka, T.; Takahashi, T.; Mitsudomi, T. A rapid, sensitive assay to detect EGFR mutation in small biopsy specimens from lung cancer. J. Mol. Diagn., 2006, 8(3), 335-341.
[79]
Kimura, H.; Fujiwara, Y.; Sone, T.; Kunitoh, H.; Tamura, T.; Kasahara, K.; Nishio, K. High sensitivity detection of epidermal growth factor receptor mutations in the pleural effusion of non-small cell lung cancer patients. Cancer Sci., 2006, 97(7), 642-648.
[80]
Naoki, K.; Soejima, K.; Okamoto, H.; Hamamoto, J.; Hida, N.; Nakachi, I.; Yasuda, H.; Nakayama, S.; Yoda, S.; Satomi, R.; Ikemura, S.; Terai, H.; Sato, T.; Watanabe, K. The PCR-invader method (structure-specific 5′ nuclease-based method), a sensitive method for detecting EGFR gene mutations in lung cancer specimens; comparison with direct sequencing. Int. J. Clin. Oncol., 2011, 16(4), 335-344.
[81]
Kimura, H.; Ohira, T.; Uchida, O.; Matsubayashi, J.; Shimizu, S.; Nagao, T.; Ikeda, N.; Nishio, K. Analytical performance of the cobas EGFR mutation assay for Japanese non-small-cell lung cancer. Lung Cancer, 2014, 83(3), 329-333.
[82]
Marchetti, A.; Martella, C.; Felicioni, L.; Barassi, F.; Salvatore, S.; Chella, A.; Camplese, P.P.; Iarussi, T.; Mucilli, F.; Mezzetti, A.; Cuccurullo, F.; Sacco, R.; Buttitta, F. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J. Clin. Oncol., 2005, 23(4), 857-865.
[83]
Sugio, K.; Uramoto, H.; Ono, K.; Oyama, T.; Hanagiri, T.; Sugaya, M.; Ichiki, Y.; So, T.; Nakata, S.; Morita, M.; Yasumoto, K. Mutations within the tyrosine kinase domain of EGFR gene specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking. Br. J. Cancer, 2006, 94(6), 896-903.
[84]
Tsao, M.S.; Sakurada, A.; Ding, K.; Aviel-Ronen, S.; Ludkovski, O.; Liu, N.; Le Maître, A.; Gandara, D.; Johnson, D.H.; Rigas, J.R.; Seymour, L.; Shepherd, F.A. Prognostic and predictive value of epidermal growth factor receptor tyrosine kinase domain mutation status and gene copy number for adjuvant chemotherapy in non-small cell lung cancer. J. Thorac. Oncol., 2011, 6(1), 139-147.
[85]
Miyamae, Y.; Shimizu, K.; Hirato, J.; Araki, T.; Tanaka, K.; Ogawa, H.; Kakegawa, S.; Sugano, M.; Nakano, T.; Mitani, Y.; Kaira, K.; Takeyoshi, I. Significance of epidermal growth factor receptor gene mutations in squamous cell lung carcinoma. Oncol. Rep., 2011, 25(4), 921-928.
[86]
Network, C.G.A.R. Comprehensive genomic characterization of squamous cell lung cancers. Nature, 2012, 489(7417), 519-525.
[87]
Pao, W.; Ladanyi, M. Epidermal growth factor receptor mutation testing in lung cancer: searching for the ideal method. Clin. Cancer Res., 2007, 13(17), 4954-4955.
[88]
Goto, K.; Satouchi, M.; Ishii, G.; Nishio, K.; Hagiwara, K.; Mitsudomi, T.; Whiteley, J.; Donald, E.; McCormack, R.; Todo, T. An evaluation study of EGFR mutation tests utilized for non-small-cell lung cancer in the diagnostic setting. Ann. Oncol., 2012, 23(11), 2914-2919.
[89]
Qiu, M.; Wang, J.; Xu, Y.; Ding, X.; Li, M.; Jiang, F.; Xu, L.; Yin, R. Circulating tumor DNA is effective for the detection of EGFR mutation in non-small cell lung cancer: A meta-analysis. Cancer Epidemiol. Biomarkers Prev., 2015, 24(1), 206-212.
[90]
Tan, D.S.; Yom, S.S.; Tsao, M.S.; Pass, H.I.; Kelly, K.; Peled, N.; Yung, R.C.; Wistuba, I.I.; Yatabe, Y.; Unger, M.; Mack, P.C.; Wynes, M.W.; Mitsudomi, T.; Weder, W.; Yankelevitz, D.; Herbst, R.S.; Gandara, D.R.; Carbone, D.P.; Bunn, P.A.; Mok, T.S.; Hirsch, F.R. The international association for the study of lung cancer consensus statement on optimizing management of EGFR mutation-positive non-small cell lung cancer: Status in 2016. J. Thorac. Oncol., 2016, 11(7), 946-963.
[91]
Reckamp, K.L.; Melnikova, V.O.; Karlovich, C.; Sequist, L.V.; Camidge, D.R.; Wakelee, H.; Perol, M.; Oxnard, G.R.; Kosco, K.; Croucher, P.; Samuelsz, E.; Vibat, C.R.; Guerrero, S.; Geis, J.; Berz, D.; Mann, E.; Matheny, S.; Rolfe, L.; Raponi, M.; Erlander, M.G.; Gadgeel, S. A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J. Thorac. Oncol., 2016, 11(10), 1690-1700.
[92]
Pu, D.; Liang, H.; Wei, F.; Akin, D.; Feng, Z.; Yan, Q.; Li, Y.; Zhen, Y.; Xu, L.; Dong, G.; Wan, H.; Dong, J.; Qiu, X.; Qin, C.; Zhu, D.; Wang, X.; Sun, T.; Zhang, W.; Li, C.; Tang, X.; Qiao, Y.; Wong, D.T.; Zhou, Q. Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: A pilot study. Thorac. Cancer, 2016, (4), 428-436.
[93]
Takeda, M.; Okamoto, I.; Nakagawa, K. Pooled safety analysis of EGFR-TKI treatment for EGFR mutation-positive non-small cell lung cancer. Lung Cancer, 2015, 88(1), 74-79.
[94]
Higenbottam, T.; Kuwano, K.; Nemery, B.; Fujita, Y. Understanding the mechanisms of drug-associated interstitial lung disease. Br. J. Cancer, 2004, 91(Suppl. 2), S31-S37.
[95]
Ando, M.; Okamoto, I.; Yamamoto, N.; Takeda, K.; Tamura, K.; Seto, T.; Ariyoshi, Y.; Fukuoka, M. Predictive factors for interstitial lung disease, antitumor response, and survival in non-small-cell lung cancer patients treated with gefitinib. J. Clin. Oncol., 2006, 24(16), 2549-2556.
[96]
Hotta, K.; Kiura, K.; Tabata, M.; Harita, S.; Gemba, K.; Yonei, T.; Bessho, A.; Maeda, T.; Moritaka, T.; Shibayama, T.; Matsuo, K.; Kato, K.; Kanehiro, A.; Tanimoto, Y.; Ueoka, H.; Tanimoto, M. Interstitial lung disease in Japanese patients with non-small cell lung cancer receiving gefitinib: an analysis of risk factors and treatment outcomes in Okayama Lung Cancer Study Group. Cancer J., 2005, 11(5), 417-424.
[97]
Endo, M.; Johkoh, T.; Kimura, K.; Yamamoto, N. Imaging of gefitinib-related interstitial lung disease: multi-institutional analysis by the West Japan Thoracic Oncology Group. Lung Cancer, 2006, 52(2), 135-140.
[98]
Kashiwabara, K.; Semba, H.; Fujii, S.; Tsumura, S. Outcome in advanced non-small cell lung cancer patients with successful rechallenge after recovery from epidermal growth factor receptor tyrosine kinase inhibitor-induced interstitial lung disease. Cancer Chemother. Pharmacol., 2017, 79(4), 705-710.
[99]
Kozuki, T. Skin problems and EGFR-tyrosine kinase inhibitor. Jpn. J. Clin. Oncol., 2016, 46(4), 291-298.
[100]
Albanell, J.; Rojo, F.; Averbuch, S.; Feyereislova, A.; Mascaro, J.M.; Herbst, R.; LoRusso, P.; Rischin, D.; Sauleda, S.; Gee, J.; Nicholson, R.I.; Baselga, J. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: Histopathologic and molecular consequences of receptor inhibition. J. Clin. Oncol., 2002, 20(1), 110-124.
[101]
Baselga, J.; Rischin, D.; Ranson, M.; Calvert, H.; Raymond, E.; Kieback, D.G.; Kaye, S.B.; Gianni, L.; Harris, A.; Bjork, T.; Averbuch, S.D.; Feyereislova, A.; Swaisland, H.; Rojo, F.; Albanell, J. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J. Clin. Oncol., 2002, 20(21), 4292-4302.
[102]
Malik, S.N.; Siu, L.L.; Rowinsky, E.K.; deGraffenried, L.; Hammond, L.A.; Rizzo, J.; Bacus, S.; Brattain, M.G.; Kreisberg, J.I.; Hidalgo, M. Pharmacodynamic evaluation of the epidermal growth factor receptor inhibitor OSI-774 in human epidermis of cancer patients. Clin. Cancer Res., 2003, 9(7), 2478-2486.
[103]
Mascia, F.; Mariani, V.; Girolomoni, G.; Pastore, S. Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am. J. Pathol., 2003, 163(1), 303-312.
[104]
Rodeck, U.; Jost, M.; Kari, C.; Shih, D.T.; Lavker, R.M.; Ewert, D.L.; Jensen, P.J. EGF-R dependent regulation of keratinocyte survival. J. Cell Sci., 1997, 110(Pt 2), 113-121.
[105]
Aw, D.C.; Tan, E.H.; Chin, T.M.; Lim, H.L.; Lee, H.Y.; Soo, R.A. Management of epidermal growth factor receptor tyrosine kinase inhibitor-related cutaneous and gastrointestinal toxicities. Asia Pac. J. Clin. Oncol., 2018, 14(1), 23-31.
[106]
Hirsh, V. Managing treatment-related adverse events associated with egfr tyrosine kinase inhibitors in advanced non-small-cell lung cancer. Curr. Oncol., 2011, 18(3), 126-138.
[107]
Uribe, J.M.; Gelbmann, C.M.; Traynor-Kaplan, A.E.; Barrett, K.E. Epidermal growth factor inhibits Ca(2+)-dependent Cl- transport in T84 human colonic epithelial cells. Am. J. Physiol., 1996, 271(3 Pt 1), C914-C922.
[108]
Al-Dasooqi, N.; Gibson, R.; Bowen, J.; Keefe, D. HER2 targeted therapies for cancer and the gastrointestinal tract. Curr. Drug Targets, 2009, 10(6), 537-542.
[109]
Yang, J.C.; Reguart, N.; Barinoff, J.; Köhler, J.; Uttenreuther-Fischer, M.; Stammberger, U.; O’Brien, D.; Wolf, J.; Cohen, E.E. Diarrhea associated with afatinib: an oral ErbB family blocker. Expert Rev. Anticancer Ther., 2013, 13(6), 729-736.
[110]
Jänne, P.A.; Yang, J.C.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J.H.; Frewer, P.; Cantarini, M.; Brown, K.H.; Dickinson, P.A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1689-1699.
[111]
Thatcher, N.; Chang, A.; Parikh, P.; Rodrigues Pereira, J.; Ciuleanu, T.; von Pawel, J.; Thongprasert, S.; Tan, E.H.; Pemberton, K.; Archer, V.; Carroll, K. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet, 2005, 366(9496), 1527-1537.
[112]
Fukuoka, M.; Yano, S.; Giaccone, G.; Tamura, T.; Nakagawa, K.; Douillard, J.Y.; Nishiwaki, Y.; Vansteenkiste, J.; Kudoh, S.; Rischin, D.; Eek, R.; Horai, T.; Noda, K.; Takata, I.; Smit, E.; Averbuch, S.; Macleod, A.; Feyereislova, A.; Dong, R.P.; Baselga, J. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial).[corrected]. J. Clin. Oncol., 2003, 21(12), 2237-2246.
[113]
Maruyama, R.; Nishiwaki, Y.; Tamura, T.; Yamamoto, N.; Tsuboi, M.; Nakagawa, K.; Shinkai, T.; Negoro, S.; Imamura, F.; Eguchi, K.; Takeda, K.; Inoue, A.; Tomii, K.; Harada, M.; Masuda, N.; Jiang, H.; Itoh, Y.; Ichinose, Y.; Saijo, N.; Fukuoka, M. Phase III study, V-15-32, of gefitinib versus docetaxel in previously treated Japanese patients with non-small-cell lung cancer. J. Clin. Oncol., 2008, 26(26), 4244-4252.
[114]
Han, J.Y.; Park, K.; Kim, S.W.; Lee, D.H.; Kim, H.Y.; Kim, H.T.; Ahn, M.J.; Yun, T.; Ahn, J.S.; Suh, C.; Lee, J.S.; Yoon, S.J.; Han, J.H.; Lee, J.W.; Jo, S.J. First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J. Clin. Oncol., 2012, 30(10), 1122-1128.
[115]
Kim, E.S.; Hirsh, V.; Mok, T.; Socinski, M.A.; Gervais, R.; Wu, Y.L.; Li, L.Y.; Watkins, C.L.; Sellers, M.V.; Lowe, E.S.; Sun, Y.; Liao, M.L.; Osterlind, K.; Reck, M.; Armour, A.A.; Shepherd, F.A.; Lippman, S.M.; Douillard, J.Y. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet, 2008, 372(9652), 1809-1818.
[116]
Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; Fujita, Y.; Okinaga, S.; Hirano, H.; Yoshimori, K.; Harada, T.; Ogura, T.; Ando, M.; Miyazawa, H.; Tanaka, T.; Saijo, Y.; Hagiwara, K.; Morita, S.; Nukiwa, T. Group, N.-E. J.S. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med., 2010, 362(25), 2380-2388.
[117]
Mitsudomi, T.; Morita, S.; Yatabe, Y.; Negoro, S.; Okamoto, I.; Tsurutani, J.; Seto, T.; Satouchi, M.; Tada, H.; Hirashima, T.; Asami, K.; Katakami, N.; Takada, M.; Yoshioka, H.; Shibata, K.; Kudoh, S.; Shimizu, E.; Saito, H.; Toyooka, S.; Nakagawa, K.; Fukuoka, M.; Group, W.J.O. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol., 2010, 11(2), 121-128.
[118]
Chmielecki, J.; Foo, J.; Oxnard, G.R.; Hutchinson, K.; Ohashi, K.; Somwar, R.; Wang, L.; Amato, K.R.; Arcila, M.; Sos, M.L.; Socci, N.D.; Viale, A.; de Stanchina, E.; Ginsberg, M.S.; Thomas, R.K.; Kris, M.G.; Inoue, A.; Ladanyi, M.; Miller, V.A.; Michor, F.; Pao, W. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci. Transl. Med., 2011, 3(90), 90ra59.
[119]
Soria, J.C.; Wu, Y.L.; Nakagawa, K.; Kim, S.W.; Yang, J.J.; Ahn, M.J.; Wang, J.; Yang, J.C.; Lu, Y.; Atagi, S.; Ponce, S.; Lee, D.H.; Liu, Y.; Yoh, K.; Zhou, J.Y.; Shi, X.; Webster, A.; Jiang, H.; Mok, T.S. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial. Lancet Oncol., 2015, 16(8), 990-998.
[120]
Mok, T.S.K.; Kim, S.W.; Wu, Y.L.; Nakagawa, K.; Yang, J.J.; Ahn, M.J.; Wang, J.; Yang, J.C.; Lu, Y.; Atagi, S.; Ponce, S.; Shi, X.; Rukazenkov, Y.; Haddad, V.; Thress, K.S.; Soria, J.C. Gefitinib plus chemotherapy versus chemotherapy in epidermal growth factor receptor mutation-positive non-small-cell lung cancer resistant to first-line gefitinib (IMPRESS): Overall survival and biomarker analyses. J. Clin. Oncol., 2017, 35(36), 4027-4034.
[121]
Oizumi, S.; Sugawara, S.; Minato, K.; Harada, T.; Inoue, A.; Fujita, Y.; Maemondo, M.; Watanabe, S.; Ito, K.; Gemma, A.; Demura, Y.; Fukumoto, S.; Isobe, H.; Kinoshita, I.; Morita, S.; Kobayashi, K.; Hagiwara, K.; Aiba, K.; Nukiwa, T. Updated survival outcomes of NEJ005/TCOG0902: a randomised phase II study of concurrent versus sequential alternating gefitinib and chemotherapy in previously untreated non-small cell lung cancer with sensitive. ESMO Open, 2018, 3(2), e000313.
[122]
Nakamura, A.; Inoue, A.; Morita, S.; Hosomi, Y.; Kato, T.; Fukuhara, T.; Gemma, A.; Takahashi, K.; Fujita, Y.; Harada, T.; Minato, K.; Takamura, K.; Kobayashi, K.; Nukiwa, T. Phase III study comparing gefitinib monotherapy (G) to combination therapy with gefitinib, carboplatin, and pemetrexed (GCP) for untreated patients (pts) with advanced non-small cell lung cancer (NSCLC) with EGFR mutations (NEJ009). 2018, 36(15 suppl), 9005-9005.
[123]
Pérez-Soler, R.; Chachoua, A.; Hammond, L.A.; Rowinsky, E.K.; Huberman, M.; Karp, D.; Rigas, J.; Clark, G.M.; Santabárbara, P.; Bonomi, P. Determinants of tumor response and survival with erlotinib in patients with non--small-cell lung cancer. J. Clin. Oncol., 2004, 22(16), 3238-3247.
[124]
Blackhall, F.; Ranson, M.; Thatcher, N. Where next for gefitinib in patients with lung cancer? Lancet Oncol., 2006, 7(6), 499-507.
[125]
Zhou, C.; Wu, Y.L.; Chen, G.; Feng, J.; Liu, X.Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; Lu, S.; Zhang, L.; Hu, C.; Luo, Y.; Chen, L.; Ye, M.; Huang, J.; Zhi, X.; Zhang, Y.; Xiu, Q.; Ma, J.; You, C. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. Lancet Oncol., 2011, 12(8), 735-742.
[126]
Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; Porta, R.; Cobo, M.; Garrido, P.; Longo, F.; Moran, T.; Insa, A.; De Marinis, F.; Corre, R.; Bover, I.; Illiano, A.; Dansin, E.; de Castro, J.; Milella, M.; Reguart, N.; Altavilla, G.; Jimenez, U.; Provencio, M.; Moreno, M.A.; Terrasa, J.; Muñoz-Langa, J.; Valdivia, J.; Isla, D.; Domine, M.; Molinier, O.; Mazieres, J.; Baize, N.; Garcia-Campelo, R.; Robinet, G.; Rodriguez-Abreu, D.; Lopez-Vivanco, G.; Gebbia, V.; Ferrera-Delgado, L.; Bombaron, P.; Bernabe, R.; Bearz, A.; Artal, A.; Cortesi, E.; Rolfo, C.; Sanchez-Ronco, M.; Drozdowskyj, A.; Queralt, C.; de Aguirre, I.; Ramirez, J.L.; Sanchez, J.J.; Molina, M.A.; Taron, M.; Paz-Ares, L.; Toracica, S. L. C. G. i. c. w. G. F. d. P.-C. a. A. I. O. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol., 2012, 13(3), 239-246.
[127]
Urata, Y.; Katakami, N.; Morita, S.; Kaji, R.; Yoshioka, H.; Seto, T.; Satouchi, M.; Iwamoto, Y.; Kanehara, M.; Fujimoto, D.; Ikeda, N.; Murakami, H.; Daga, H.; Oguri, T.; Goto, I.; Imamura, F.; Sugawara, S.; Saka, H.; Nogami, N.; Negoro, S.; Nakagawa, K.; Nakanishi, Y. Randomized phase iii study comparing gefitinib with erlotinib in patients with previously treated advanced lung adenocarcinoma: WJOG 5108L. J. Clin. Oncol., 2016, 34(27), 3248-3257.
[128]
Seto, T.; Kato, T.; Nishio, M.; Goto, K.; Atagi, S.; Hosomi, Y.; Yamamoto, N.; Hida, T.; Maemondo, M.; Nakagawa, K.; Nagase, S.; Okamoto, I.; Yamanaka, T.; Tajima, K.; Harada, R.; Fukuoka, M. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol., 2014, 15(11), 1236-1244.
[129]
Furuya, N.; Fukuhara, T.; Saito, H.; Watanabe, K.; Sugawara, S.; Iwasawa, S.; Tsunezuka, Y.; Yamaguchi, O.; Okada, M.; Yoshimori, K.; Nakachi, I.; Gemma, A.; Azuma, K.; Hagiwara, K.; Nukiwa, T.; Morita, S.; Kobayashi, K.; Maemondo, M.; Group, N. E.J.S. Phase III study comparing bevacizumab plus erlotinib to erlotinib in patients with untreated NSCLC harboring activating EGFR mutations:NEJ026 J. Clin. Oncol., 2018, 36(15_suppl), 9006-9006.
[130]
Yamamoto, N.; Seto, T.; Nishio, M.; Goto, K.; Okamoto, I.; Yamanaka, T.; Tanaka, M.; Takahashi, K.; Fukuoka, M.; Yamamoto, N. Erlotinib plus bevacizumab (EB) versus erlotinib alone (E) as firstline treatment for advanced EGFR mutation–positive nonsquamous non–small-cell lung cancer (NSCLC): Survival followup results of JO25567. J. Clin. Oncol, 2018, 36(15_suppl), 9007-9007.
[131]
Yang, J.C.; Shih, J.Y.; Su, W.C.; Hsia, T.C.; Tsai, C.M.; Ou, S.H.; Yu, C.J.; Chang, G.C.; Ho, C.L.; Sequist, L.V.; Dudek, A.Z.; Shahidi, M.; Cong, X.J.; Lorence, R.M.; Yang, P.C.; Miller, V.A. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): A phase 2 trial. Lancet Oncol., 2012, 13(5), 539-548.
[132]
Sequist, L.V.; Yang, J.C.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.M.; Boyer, M.; Su, W.C.; Bennouna, J.; Kato, T.; Gorbunova, V.; Lee, K.H.; Shah, R.; Massey, D.; Zazulina, V.; Shahidi, M.; Schduler, M. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol., 2013, 31(27), 3327-3334.
[133]
Wu, Y.L.; Zhou, C.; Hu, C.P.; Feng, J.; Lu, S.; Huang, Y.; Li, W.; Hou, M.; Shi, J.H.; Lee, K.Y.; Xu, C.R.; Massey, D.; Kim, M.; Shi, Y.; Geater, S.L. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): An open-label, randomised phase 3 trial. Lancet Oncol., 2014, 15(2), 213-222.
[134]
Yang, J.C.; Wu, Y.L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.P.; O’Byrne, K.; Feng, J.; Lu, S.; Huang, Y.; Geater, S.L.; Lee, K.Y.; Tsai, C.M.; Gorbunova, V.; Hirsh, V.; Bennouna, J.; Orlov, S.; Mok, T.; Boyer, M.; Su, W.C.; Lee, K.H.; Kato, T.; Massey, D.; Shahidi, M.; Zazulina, V.; Sequist, L.V. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol., 2015, 16(2), 141-151.
[135]
Kobayashi, Y.; Mitsudomi, T. Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy. Cancer Sci., 2016, 107(9), 1179-1186.
[136]
Nanjo, S.; Ebi, H.; Arai, S.; Takeuchi, S.; Yamada, T.; Mochizuki, S.; Okada, Y.; Nakada, M.; Murakami, T.; Yano, S. High efficacy of third generation EGFR inhibitor AZD9291 in a leptomeningeal carcinomatosis model with EGFR-mutant lung cancer cells. Oncotarget, 2016, 7(4), 3847-3856.
[137]
Hirsh, V. Turning. Ther. Adv. Med. Oncol., 2018, 10, 1758834017753338.
[138]
Mok, T.S.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Lee, M.; Linke, R.; Rosell, R.; Corral, J.; Migliorino, M.R.; Pluzanski, A.; Sbar, E.I.; Wang, T.; White, J.L.; Wu, Y.L. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and egfr-activating mutations. J. Clin. Oncol., 2018, 36(22), 2244-2250.
[139]
Sequist, L.V.; Soria, J.C.; Goldman, J.W.; Wakelee, H.A.; Gadgeel, S.M.; Varga, A.; Papadimitrakopoulou, V.; Solomon, B.J.; Oxnard, G.R.; Dziadziuszko, R.; Aisner, D.L.; Doebele, R.C.; Galasso, C.; Garon, E.B.; Heist, R.S.; Logan, J.; Neal, J.W.; Mendenhall, M.A.; Nichols, S.; Piotrowska, Z.; Wozniak, A.J.; Raponi, M.; Karlovich, C.A.; Jaw-Tsai, S.; Isaacson, J.; Despain, D.; Matheny, S.L.; Rolfe, L.; Allen, A.R.; Camidge, D.R. Rociletinib in EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1700-1709.
[140]
Thress, K.S.; Paweletz, C.P.; Felip, E.; Cho, B.C.; Stetson, D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.; Ercan, D.; Matthews, S.E.; Cantarini, M.; Barrett, J.C.; Jänne, P.A.; Oxnard, G.R. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med., 2015, 21(6), 560-562.
[141]
Ercan, D.; Choi, H.G.; Yun, C.H.; Capelletti, M.; Xie, T.; Eck, M.J.; Gray, N.S.; Jänne, P.A. EGFR mutations and resistance to irreversible pyrimidine-based EGFR inhibitors. Clin. Cancer Res., 2015, 21(17), 3913-3923.
[142]
Uchibori, K.; Inase, N.; Araki, M.; Kamada, M.; Sato, S.; Okuno, Y.; Fujita, N.; Katayama, R. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat. Commun., 2017, 8, 14768.
[143]
Planchard, D.; Loriot, Y.; André, F.; Gobert, A.; Auger, N.; Lacroix, L.; Soria, J.C. EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann. Oncol., 2015, 26(10), 2073-2078.
[144]
Ho, C.C.; Liao, W.Y.; Lin, C.A.; Shih, J.Y.; Yu, C.J.; Chih-Hsin Yang, J. J. Acquired BRAF V600E mutation as resistant mechanism after treatment with osimertinib. J. Thorac. Oncol., 2017, 12(3), 567-572.
[145]
Yano, S.; Wang, W.; Li, Q.; Matsumoto, K.; Sakurama, H.; Nakamura, T.; Ogino, H.; Kakiuchi, S.; Hanibuchi, M.; Nishioka, Y.; Uehara, H.; Mitsudomi, T.; Yatabe, Y.; Sone, S. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res., 2008, 68(22), 9479-9487.
[146]
Cheung, H.W.; Du, J.; Boehm, J.S.; He, F.; Weir, B.A.; Wang, X.; Butaney, M.; Sequist, L.V.; Luo, B.; Engelman, J.A.; Root, D.E.; Meyerson, M.; Golub, T.R.; Jänne, P.A.; Hahn, W.C. Amplification of CRKL induces transformation and epidermal growth factor receptor inhibitor resistance in human non-small cell lung cancers. Cancer Discov., 2011, 1(7), 608-625.
[147]
Sequist, L.V.; Waltman, B.A.; Dias-Santagata, D.; Digumarthy, S.; Turke, A.B.; Fidias, P.; Bergethon, K.; Shaw, A.T.; Gettinger, S.; Cosper, A.K.; Akhavanfard, S.; Heist, R.S.; Temel, J.; Christensen, J.G.; Wain, J.C.; Lynch, T.J.; Vernovsky, K.; Mark, E.J.; Lanuti, M.; Iafrate, A.J.; Mino-Kenudson, M.; Engelman, J.A. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med., 2011, 3(75), 75ra26.
[148]
Ercan, D.; Xu, C.; Yanagita, M.; Monast, C.S.; Pratilas, C.A.; Montero, J.; Butaney, M.; Shimamura, T.; Sholl, L.; Ivanova, E.V.; Tadi, M.; Rogers, A.; Repellin, C.; Capelletti, M.; Maertens, O.; Goetz, E.M.; Letai, A.; Garraway, L.A.; Lazzara, M.J.; Rosen, N.; Gray, N.S.; Wong, K.K.; Jänne, P.A. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discov., 2012, 2(10), 934-947.
[149]
Sos, M.L.; Koker, M.; Weir, B.A.; Heynck, S.; Rabinovsky, R.; Zander, T.; Seeger, J.M.; Weiss, J.; Fischer, F.; Frommolt, P.; Michel, K.; Peifer, M.; Mermel, C.; Girard, L.; Peyton, M.; Gazdar, A.F.; Minna, J.D.; Garraway, L.A.; Kashkar, H.; Pao, W.; Meyerson, M.; Thomas, R.K. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res., 2009, 69(8), 3256-3261.
[150]
Yamamoto, C.; Basaki, Y.; Kawahara, A.; Nakashima, K.; Kage, M.; Izumi, H.; Kohno, K.; Uramoto, H.; Yasumoto, K.; Kuwano, M.; Ono, M. Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations. Cancer Res., 2010, 70(21), 8715-8725.
[151]
Uramoto, H.; Iwata, T.; Onitsuka, T.; Shimokawa, H.; Hanagiri, T.; Oyama, T. Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma. Anticancer Res., 2010, 30(7), 2513-2517.
[152]
Zhang, Z.; Lee, J.C.; Lin, L.; Olivas, V.; Au, V.; LaFramboise, T.; Abdel-Rahman, M.; Wang, X.; Levine, A.D.; Rho, J.K.; Choi, Y.J.; Choi, C.M.; Kim, S.W.; Jang, S.J.; Park, Y.S.; Kim, W.S.; Lee, D.H.; Lee, J.S.; Miller, V.A.; Arcila, M.; Ladanyi, M.; Moonsamy, P.; Sawyers, C.; Boggon, T.J.; Ma, P.C.; Costa, C.; Taron, M.; Rosell, R.; Halmos, B.; Bivona, T.G. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet., 2012, 44(8), 852-860.
[153]
Huang, S.; Hölzel, M.; Knijnenburg, T.; Schlicker, A.; Roepman, P.; McDermott, U.; Garnett, M.; Grernrum, W.; Sun, C.; Prahallad, A.; Groenendijk, F.H.; Mittempergher, L.; Nijkamp, W.; Neefjes, J.; Salazar, R.; Ten Dijke, P.; Uramoto, H.; Tanaka, F.; Beijersbergen, R.L.; Wessels, L.F.; Bernards, R. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell, 2012, 151(5), 937-950.
[154]
Yao, Z.; Fenoglio, S.; Gao, D.C.; Camiolo, M.; Stiles, B.; Lindsted, T.; Schlederer, M.; Johns, C.; Altorki, N.; Mittal, V.; Kenner, L.; Sordella, R. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 15535-15540.
[155]
Shaw, A.T.; Yeap, B.Y.; Mino-Kenudson, M.; Digumarthy, S.R.; Costa, D.B.; Heist, R.S.; Solomon, B.; Stubbs, H.; Admane, S.; McDermott, U.; Settleman, J.; Kobayashi, S.; Mark, E.J.; Rodig, S.J.; Chirieac, L.R.; Kwak, E.L.; Lynch, T.J.; Iafrate, A.J. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J. Clin. Oncol., 2009, 27(26), 4247-4253.
[156]
Lindeman, N.I.; Cagle, P.T.; Beasley, M.B.; Chitale, D.A.; Dacic, S.; Giaccone, G.; Jenkins, R.B.; Kwiatkowski, D.J.; Saldivar, J.S.; Squire, J.; Thunnissen, E.; Ladanyi, M. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the college of American pathologists, international association for the study of lung cancer, and association for molecular pathology. J. Thorac. Oncol., 2013, 8(7), 823-859.
[157]
Rikova, K.; Guo, A.; Zeng, Q.; Possemato, A.; Yu, J.; Haack, H.; Nardone, J.; Lee, K.; Reeves, C.; Li, Y.; Hu, Y.; Tan, Z.; Stokes, M.; Sullivan, L.; Mitchell, J.; Wetzel, R.; Macneill, J.; Ren, J.M.; Yuan, J.; Bakalarski, C.E.; Villen, J.; Kornhauser, J.M.; Smith, B.; Li, D.; Zhou, X.; Gygi, S.P.; Gu, T.L.; Polakiewicz, R.D.; Rush, J.; Comb, M.J. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 2007, 131(6), 1190-1203.
[158]
Takeuchi, K.; Choi, Y.L.; Togashi, Y.; Soda, M.; Hatano, S.; Inamura, K.; Takada, S.; Ueno, T.; Yamashita, Y.; Satoh, Y.; Okumura, S.; Nakagawa, K.; Ishikawa, Y.; Mano, H. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin. Cancer Res., 2009, 15(9), 3143-3149.
[159]
Inamura, K.; Takeuchi, K.; Togashi, Y.; Hatano, S.; Ninomiya, H.; Motoi, N.; Mun, M.Y.; Sakao, Y.; Okumura, S.; Nakagawa, K.; Soda, M.; Choi, Y.L.; Mano, H.; Ishikawa, Y. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod. Pathol., 2009, 22(4), 508-215.
[160]
Rodig, S.J.; Mino-Kenudson, M.; Dacic, S.; Yeap, B.Y.; Shaw, A.; Barletta, J.A.; Stubbs, H.; Law, K.; Lindeman, N.; Mark, E.; Janne, P.A.; Lynch, T.; Johnson, B.E.; Iafrate, A.J.; Chirieac, L.R. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin. Cancer Res., 2009, 15(16), 5216-5223.
[161]
Katayama, R.; Shaw, A.T.; Khan, T.M.; Mino-Kenudson, M.; Solomon, B.J.; Halmos, B.; Jessop, N.A.; Wain, J.C.; Yeo, A.T.; Benes, C.; Drew, L.; Saeh, J.C.; Crosby, K.; Sequist, L.V.; Iafrate, A.J.; Engelman, J.A. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci. Transl. Med., 2012, 4(120), 120ra17.
[162]
Gainor, J.F.; Shaw, A.T. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J. Clin. Oncol., 2013, 31(31), 3987-3996.
[163]
Toyokawa, G.; Seto, T. Updated evidence on the mechanisms of resistance to ALK inhibitors and strategies to overcome such resistance: Clinical and preclinical data. Oncol. Res. Treat., 2015, 38(6), 291-298.
[164]
Kodama, T.; Tsukaguchi, T.; Yoshida, M.; Kondoh, O.; Sakamoto, H. Selective ALK inhibitor alectinib with potent antitumor activity in models of crizotinib resistance. Cancer Lett., 2014, 351(2), 215-221.
[165]
Friboulet, L.; Li, N.; Katayama, R.; Lee, C.C.; Gainor, J.F.; Crystal, A.S.; Michellys, P.Y.; Awad, M.M.; Yanagitani, N.; Kim, S.; Pferdekamper, A.C.; Li, J.; Kasibhatla, S.; Sun, F.; Sun, X.; Hua, S.; McNamara, P.; Mahmood, S.; Lockerman, E.L.; Fujita, N.; Nishio, M.; Harris, J.L.; Shaw, A.T.; Engelman, J.A. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov., 2014, 4(6), 662-673.
[166]
Katayama, R.; Khan, T.M.; Benes, C.; Lifshits, E.; Ebi, H.; Rivera, V.M.; Shakespeare, W.C.; Iafrate, A.J.; Engelman, J.A.; Shaw, A.T. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc. Natl. Acad. Sci. USA, 2011, 108(18), 7535-7540.
[167]
Katayama, R.; Friboulet, L.; Koike, S.; Lockerman, E.L.; Khan, T.M.; Gainor, J.F.; Iafrate, A.J.; Takeuchi, K.; Taiji, M.; Okuno, Y.; Fujita, N.; Engelman, J.A.; Shaw, A.T. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin. Cancer Res., 2014, 20(22), 5686-5696.
[168]
Ignatius Ou, S.H.; Azada, M.; Hsiang, D.J.; Herman, J.M.; Kain, T.S.; Siwak-Tapp, C.; Casey, C.; He, J.; Ali, S.M.; Klempner, S.J.; Miller, V.A. Next-generation sequencing reveals a Novel NSCLC ALK F1174V mutation and confirms ALK G1202R mutation confers high-level resistance to alectinib (CH5424802/RO5424802) in ALK-rearranged NSCLC patients who progressed on crizotinib. J. Thorac. Oncol., 2014, 9(4), 549-553.
[169]
Park, S.; Park, T.S.; Choi, C.M.; Lee, D.H.; Kim, S.W.; Lee, J.S.; Kim, W.S.; Song, J.S.; Lee, J.C. Survival benefit of pemetrexed in lung adenocarcinoma patients with anaplastic lymphoma kinase gene rearrangements. Clin. Lung Cancer, 2015, 16(5), e83-e89.
[170]
Camidge, D.R.; Kono, S.A.; Lu, X.; Okuyama, S.; Barón, A.E.; Oton, A.B.; Davies, A.M.; Varella-Garcia, M.; Franklin, W.; Doebele, R.C. Anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer are associated with prolonged progression-free survival on pemetrexed. J. Thorac. Oncol., 2011, 6(4), 774-780.
[171]
Boland, J.M.; Erdogan, S.; Vasmatzis, G.; Yang, P.; Tillmans, L.S.; Johnson, M.R.; Wang, X.; Peterson, L.M.; Halling, K.C.; Oliveira, A.M.; Aubry, M.C.; Yi, E.S. Anaplastic lymphoma kinase immunoreactivity correlates with ALK gene rearrangement and transcriptional up-regulation in non-small cell lung carcinomas. Hum. Pathol., 2009, 40(8), 1152-1158.
[172]
Inamura, K.; Takeuchi, K.; Togashi, Y.; Nomura, K.; Ninomiya, H.; Okui, M.; Satoh, Y.; Okumura, S.; Nakagawa, K.; Soda, M.; Choi, Y.L.; Niki, T.; Mano, H.; Ishikawa, Y. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J. Thorac. Oncol., 2008, 3(1), 13-17.
[173]
Koivunen, J.P.; Mermel, C.; Zejnullahu, K.; Murphy, C.; Lifshits, E.; Holmes, A.J.; Choi, H.G.; Kim, J.; Chiang, D.; Thomas, R.; Lee, J.; Richards, W.G.; Sugarbaker, D.J.; Ducko, C.; Lindeman, N.; Marcoux, J.P.; Engelman, J.A.; Gray, N.S.; Lee, C.; Meyerson, M.; Jänne, P.A. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer Res., 2008, 14(13), 4275-4283.
[174]
Salido, M.; Pijuan, L.; Martínez-Avilés, L.; Galván, A.B.; Cañadas, I.; Rovira, A.; Zanui, M.; Martínez, A.; Longarón, R.; Sole, F.; Serrano, S.; Bellosillo, B.; Wynes, M.W.; Albanell, J.; Hirsch, F.R.; Arriola, E. Increased ALK gene copy number and amplification are frequent in non-small cell lung cancer. J. Thorac. Oncol., 2011, 6(1), 21-27.
[175]
Takeuchi, K.; Choi, Y.L.; Soda, M.; Inamura, K.; Togashi, Y.; Hatano, S.; Enomoto, M.; Takada, S.; Yamashita, Y.; Satoh, Y.; Okumura, S.; Nakagawa, K.; Ishikawa, Y.; Mano, H. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin. Cancer Res., 2008, 14(20), 6618-6624.
[176]
Takahashi, T.; Sonobe, M.; Kobayashi, M.; Yoshizawa, A.; Menju, T.; Nakayama, E.; Mino, N.; Iwakiri, S.; Sato, K.; Miyahara, R.; Okubo, K.; Manabe, T.; Date, H. Clinicopathologic features of non-small-cell lung cancer with EML4-ALK fusion gene. Ann. Surg. Oncol., 2010, 17(3), 889-897.
[177]
Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; Iyer, S.; Reisman, A.; Wilner, K.D.; Tursi, J.; Blackhall, F.; Investigators, P. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med., 2014, 371(23), 2167-2177.
[178]
Camidge, D.R.; Kono, S.A.; Flacco, A.; Tan, A.C.; Doebele, R.C.; Zhou, Q.; Crino, L.; Franklin, W.A.; Varella-Garcia, M. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin. Cancer Res., 2010, 16(22), 5581-5590.
[179]
Chihara, D.; Suzuki, R. More on crizotinib. N. Engl. J. Med, 2011, 364(8), 776-777. author reply 778
[180]
Mino-Kenudson, M.; Chirieac, L.R.; Law, K.; Hornick, J.L.; Lindeman, N.; Mark, E.J.; Cohen, D.W.; Johnson, B.E.; Jänne, P.A.; Iafrate, A.J.; Rodig, S.J. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin. Cancer Res., 2010, 16(5), 1561-1571.
[181]
Paik, J.H.; Choe, G.; Kim, H.; Choe, J.Y.; Lee, H.J.; Lee, C.T.; Lee, J.S.; Jheon, S.; Chung, J.H. Screening of anaplastic lymphoma kinase rearrangement by immunohistochemistry in non-small cell lung cancer: correlation with fluorescence in situ hybridization. J. Thorac. Oncol., 2011, 6(3), 466-472.
[182]
Zhu, Q.; Hu, H.; Weng, D.S.; Zhang, X.F.; Chen, C.L.; Zhou, Z.Q.; Tang, Y.; Xia, J.C. Pooled safety analyses of ALK-TKI inhibitor in ALK-positive NSCLC. BMC Cancer, 2017, 17(1), 412.
[183]
Soria, J.C.; Tan, D.S.W.; Chiari, R.; Wu, Y.L.; Paz-Ares, L.; Wolf, J.; Geater, S.L.; Orlov, S.; Cortinovis, D.; Yu, C.J.; Hochmair, M.; Cortot, A.B.; Tsai, C.M.; Moro-Sibilot, D.; Campelo, R.G.; McCulloch, T.; Sen, P.; Dugan, M.; Pantano, S.; Branle, F.; Massacesi, C.; de Castro, G. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): A randomised, open-label, phase 3 study. Lancet, 2017, 389(10072), 917-929.
[184]
Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.; Dezube, B.J.; Jänne, P.A.; Costa, D.B.; Varella-Garcia, M.; Kim, W.H.; Lynch, T.J.; Fidias, P.; Stubbs, H.; Engelman, J.A.; Sequist, L.V.; Tan, W.; Gandhi, L.; Mino-Kenudson, M.; Wei, G.C.; Shreeve, S.M.; Ratain, M.J.; Settleman, J.; Christensen, J.G.; Haber, D.A.; Wilner, K.; Salgia, R.; Shapiro, G.I.; Clark, J.W.; Iafrate, A.J. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med., 2010, 363(18), 1693-1703.
[185]
Weickhardt, A.J.; Scheier, B.; Burke, J.M.; Gan, G.; Lu, X.; Bunn, P.A.; Aisner, D.L.; Gaspar, L.E.; Kavanagh, B.D.; Doebele, R.C.; Camidge, D.R. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J. Thorac. Oncol., 2012, 7(12), 1807-1814.
[186]
Gan, G.N.; Weickhardt, A.J.; Scheier, B.; Doebele, R.C.; Gaspar, L.E.; Kavanagh, B.D.; Camidge, D.R. Stereotactic radiation therapy can safely and durably control sites of extra-central nervous system oligoprogressive disease in anaplastic lymphoma kinase-positive lung cancer patients receiving crizotinib. Int. J. Radiat. Oncol. Biol. Phys., 2014, 88(4), 892-898.
[187]
Ou, S.H.; Jänne, P.A.; Bartlett, C.H.; Tang, Y.; Kim, D.W.; Otterson, G.A.; Crinò, L.; Selaru, P.; Cohen, D.P.; Clark, J.W.; Riely, G.J. Clinical benefit of continuing ALK inhibition with crizotinib beyond initial disease progression in patients with advanced ALK-positive NSCLC. Ann. Oncol., 2014, 25(2), 415-422.
[188]
Tsuji, T.; Ozasa, H.; Aoki, W.; Aburaya, S.; Funazo, T.; Furugaki, K.; Yoshimura, Y.; Ajimizu, H.; Okutani, R.; Yasuda, Y.; Nomizo, T.; Uemasu, K.; Hasegawa, K.; Yoshida, H.; Yagi, Y.; Nagai, H.; Sakamori, Y.; Ueda, M.; Hirai, T.; Kim, Y.H. Alectinib resistance in ALK-rearranged lung cancer by dual salvage signaling in a clinically paired resistance model. Mol. Cancer Res., 2018.
[189]
Ou, S.H.; Ahn, J.S.; De Petris, L.; Govindan, R.; Yang, J.C.; Hughes, B.; Lena, H.; Moro-Sibilot, D.; Bearz, A.; Ramirez, S.V.; Mekhail, T.; Spira, A.; Bordogna, W.; Balas, B.; Morcos, P.N.; Monnet, A.; Zeaiter, A.; Kim, D.W. Alectinib in crizotinib-refractory ALK-rearranged non-small-cell lung cancer: A phase ii global study. J. Clin. Oncol., 2016, 34(7), 661-668.
[190]
Shaw, A.T.; Kim, T.M.; Crinò, L.; Gridelli, C.; Kiura, K.; Liu, G.; Novello, S.; Bearz, A.; Gautschi, O.; Mok, T.; Nishio, M.; Scagliotti, G.; Spigel, D.R.; Deudon, S.; Zheng, C.; Pantano, S.; Urban, P.; Massacesi, C.; Viraswami-Appanna, K.; Felip, E. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol., 2017, 18(7), 874-886.
[191]
Ou, S.H.; Klempner, S.J.; Greenbowe, J.R.; Azada, M.; Schrock, A.B.; Ali, S.M.; Ross, J.S.; Stephens, P.J.; Miller, V.A. Identification of a novel HIP1-ALK fusion variant in Non-Small-Cell Lung Cancer (NSCLC) and discovery of ALK I1171 (I1171N/S) mutations in two ALK-rearranged NSCLC patients with resistance to Alectinib. J. Thorac. Oncol., 2014, 9(12), 1821-1825.
[192]
Toyokawa, G.; Hirai, F.; Inamasu, E.; Yoshida, T.; Nosaki, K.; Takenaka, T.; Yamaguchi, M.; Seto, T.; Takenoyama, M.; Ichinose, Y. Secondary mutations at I1171 in the ALK gene confer resistance to both Crizotinib and Alectinib. J. Thorac. Oncol., 2014, 9(12), e86-e87.
[193]
Ou, S.H.; Greenbowe, J.; Khan, Z.U.; Azada, M.C.; Ross, J.S.; Stevens, P.J.; Ali, S.M.; Miller, V.A.; Gitlitz, B. I1171 missense mutation (particularly I1171N) is a common resistance mutation in ALK-positive NSCLC patients who have progressive disease while on alectinib and is sensitive to ceritinib. Lung Cancer, 2015, 88(2), 231-234.
[194]
Hida, T.; Seto, T.; Horinouchi, H.; Maemondo, M.; Takeda, M.; Hotta, K.; Hirai, F.; Kim, Y.H.; Matsumoto, S.; Ito, M.; Ayukawa, K.; Tokushige, K.; Yonemura, M.; Mitsudomi, T.; Nishio, M. Phase II study of ceritinib in alectinib-pretreated patients with anaplastic lymphoma kinase-rearranged metastatic non-small-cell lung cancer in Japan: ASCEND-9. Cancer Sci., 2018.
[195]
Gettinger, S.N.; Bazhenova, L.A.; Langer, C.J.; Salgia, R.; Gold, K.A.; Rosell, R.; Shaw, A.T.; Weiss, G.J.; Tugnait, M.; Narasimhan, N.I.; Dorer, D.J.; Kerstein, D.; Rivera, V.M.; Clackson, T.; Haluska, F.G.; Camidge, D.R. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol., 2016, 17(12), 1683-1696.
[196]
Kim, D.W.; Tiseo, M.; Ahn, M.J.; Reckamp, K.L.; Hansen, K.H.; Kim, S.W.; Huber, R.M.; West, H.L.; Groen, H.J.M.; Hochmair, M.J.; Leighl, N.B.; Gettinger, S.N.; Langer, C.J.; Paz-Ares Rodríguez, L.G.; Smit, E.F.; Kim, E.S.; Reichmann, W.; Haluska, F.G.; Kerstein, D.; Camidge, D.R. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: A randomized, multicenter phase II trial. J. Clin. Oncol., 2017, 35(22), 2490-2498.
[197]
Baglivo, S.; Ricciuti, B.; Ludovini, V.; Metro, G.; Siggillino, A.; De Giglio, A.; Chiari, R. Dramatic response to lorlatinib in a heavily pretreated lung adenocarcinoma patient harboring G1202R mutation and a synchronous novel R1192P ALK point mutation. J. Thorac. Oncol., 2018, 13(8), e145-e147.
[198]
Shaw, A.T.; Felip, E.; Bauer, T.M.; Besse, B.; Navarro, A.; Postel-Vinay, S.; Gainor, J.F.; Johnson, M.; Dietrich, J.; James, L.P.; Clancy, J.S.; Chen, J.; Martini, J.F.; Abbattista, A.; Solomon, B.J. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: An international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol., 2017, 18(12), 1590-1599.
[199]
Drilon, A.; Siena, S.; Ou, S.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; Doebele, R.; Giannetta, L.; Cerea, G.; Marrapese, G.; Schirru, M.; Amatu, A.; Bencardino, K.; Palmeri, L.; Sartore-Bianchi, A.; Vanzulli, A.; Cresta, S.; Damian, S.; Duca, M.; Ardini, E.; Li, G.; Christiansen, J.; Kowalski, K.; Johnson, A.D.; Patel, R.; Luo, D.; Chow-Maneval, E.; Hornby, Z.; Multani, P.S.; Shaw, A.T.; De Braud, F.G. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov., 2017, 7(4), 400-409.
[200]
Horn, L.; Infante, J.R.; Reckamp, K.L.; Blumenschein, G.R.; Leal, T.A.; Waqar, S.N.; Gitlitz, B.J.; Sanborn, R.E.; Whisenant, J.G.; Du, L.; Neal, J.W.; Gockerman, J.P.; Dukart, G.; Harrow, K.; Liang, C.; Gibbons, J.J.; Holzhausen, A.; Lovly, C.M.; Wakelee, H.A. Ensartinib (X-396) in ALK-positive non-small cell lung cancer: Results from a first-in-human phase i/ii, multicenter study. Clin. Cancer Res., 2018, 24(12), 2771-2779.
[201]
Sequist, L.V.; Gettinger, S.; Senzer, N.N.; Martins, R.G.; Jänne, P.A.; Lilenbaum, R.; Gray, J.E.; Iafrate, A.J.; Katayama, R.; Hafeez, N.; Sweeney, J.; Walker, J.R.; Fritz, C.; Ross, R.W.; Grayzel, D.; Engelman, J.A.; Borger, D.R.; Paez, G.; Natale, R. Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(33), 4953-4960.
[202]
Socinski, M.A.; Goldman, J.; El-Hariry, I.; Koczywas, M.; Vukovic, V.; Horn, L.; Paschold, E.; Salgia, R.; West, H.; Sequist, L.V.; Bonomi, P.; Brahmer, J.; Chen, L.C.; Sandler, A.; Belani, C.P.; Webb, T.; Harper, H.; Huberman, M.; Ramalingam, S.; Wong, K.K.; Teofilovici, F.; Guo, W.; Shapiro, G.I. A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin. Cancer Res., 2013, 19(11), 3068-3077.
[203]
Felip, E.; Barlesi, F.; Besse, B.; Chu, Q.; Gandhi, L.; Kim, S.W.; Carcereny, E.; Sequist, L.V.; Brunsvig, P.; Chouaid, C.; Smit, E.F.; Groen, H.J.M.; Kim, D.W.; Park, K.; Avsar, E.; Szpakowski, S.; Akimov, M.; Garon, E.B. Phase 2 study of the HSP-90 inhibitor AUY922 in previously treated and molecularly defined patients with advanced non-small cell lung cancer. J. Thorac. Oncol., 2018, 13(4), 576-584.
[204]
Gainor, J.F.; Shaw, A.T. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist, 2013, 18(7), 865-875.
[205]
Goto, K.; Yang, J.C.-H.; Kim, D.-W.; Lu, S.; Seto, T.; Yang, J.-J.; Yamamoto, N.; Ahn, M.-J.; Takahashi, T.; Yamanaka, T.; Kemner, A.M.; Roychowdhury, D.; Paolini, J.; Wilner, K.D.; Wu, Y.-L. Phase II study of crizotinib in east Asian patients (pts) with ROS1- positive advanced non-small cell lung cancer (NSCLC). 2016, 34(15_suppl), 9022-9022.
[206]
Awad, M.M.; Katayama, R.; McTigue, M.; Liu, W.; Deng, Y.L.; Brooun, A.; Friboulet, L.; Huang, D.; Falk, M.D.; Timofeevski, S.; Wilner, K.D.; Lockerman, E.L.; Khan, T.M.; Mahmood, S.; Gainor, J.F.; Digumarthy, S.R.; Stone, J.R.; Mino-Kenudson, M.; Christensen, J.G.; Iafrate, A.J.; Engelman, J.A.; Shaw, A.T. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med., 2013, 368(25), 2395-2401.
[207]
Song, A.; Kim, T.M.; Kim, D.W.; Kim, S.; Keam, B.; Lee, S.H.; Heo, D.S. Molecular changes associated with acquired resistance to crizotinib in ROS1-rearranged non-small cell lung cancer. Clin. Cancer Res., 2015, 21(10), 2379-2387.
[208]
Drilon, A.; Somwar, R.; Wagner, J.P.; Vellore, N.A.; Eide, C.A.; Zabriskie, M.S.; Arcila, M.E.; Hechtman, J.F.; Wang, L.; Smith, R.S.; Kris, M.G.; Riely, G.J.; Druker, B.J.; O’Hare, T.; Ladanyi, M.; Davare, M.A. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy in a patient with ros1-rearranged lung cancer. Clin. Cancer Res., 2016, 22(10), 2351-2358.
[209]
Facchinetti, F.; Loriot, Y.; Kuo, M.S.; Mahjoubi, L.; Lacroix, L.; Planchard, D.; Besse, B.; Farace, F.; Auger, N.; Remon, J.; Scoazec, J.Y.; André, F.; Soria, J.C.; Friboulet, L. Crizotinib-Resistant ROS1 Mutations Reveal a Predictive Kinase Inhibitor Sensitivity Model for ROS1- and ALK-Rearranged Lung Cancers. Clin. Cancer Res., 2016, 22(24), 5983-5991.
[210]
Marchetti, A.; Felicioni, L.; Malatesta, S.; Grazia Sciarrotta, M.; Guetti, L.; Chella, A.; Viola, P.; Pullara, C.; Mucilli, F.; Buttitta, F. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J. Clin. Oncol., 2011, 29(26), 3574-3579.
[211]
Cardarella, S.; Ogino, A.; Nishino, M.; Butaney, M.; Shen, J.; Lydon, C.; Yeap, B.Y.; Sholl, L.M.; Johnson, B.E.; Jänne, P.A. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin. Cancer Res., 2013, 19(16), 4532-4540.
[212]
Falchook, G.S.; Long, G.V.; Kurzrock, R.; Kim, K.B.; Arkenau, T.H.; Brown, M.P.; Hamid, O.; Infante, J.R.; Millward, M.; Pavlick, A.C.; O’Day, S.J.; Blackman, S.C.; Curtis, C.M.; Lebowitz, P.; Ma, B.; Ouellet, D.; Kefford, R.F. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet, 2012, 379(9829), 1893-1901.
[213]
Planchard, D.; Kim, T.M.; Mazieres, J.; Quoix, E.; Riely, G.; Barlesi, F.; Souquet, P.J.; Smit, E.F.; Groen, H.J.; Kelly, R.J.; Cho, B.C.; Socinski, M.A.; Pandite, L.; Nase, C.; Ma, B.; D’Amelio, A.; Mookerjee, B.; Curtis, C.M.; Johnson, B.E. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol., 2016, 17(5), 642-650.
[214]
Flaherty, K.T.; Infante, J.R.; Daud, A.; Gonzalez, R.; Kefford, R.F.; Sosman, J.; Hamid, O.; Schuchter, L.; Cebon, J.; Ibrahim, N.; Kudchadkar, R.; Burris, H.A.; Falchook, G.; Algazi, A.; Lewis, K.; Long, G.V.; Puzanov, I.; Lebowitz, P.; Singh, A.; Little, S.; Sun, P.; Allred, A.; Ouellet, D.; Kim, K.B.; Patel, K.; Weber, J. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med., 2012, 367(18), 1694-1703.
[215]
Larkin, J.; Ascierto, P.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; Maio, M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; de la Cruz-Merino, L.; Dutriaux, C.; Garbe, C.; Sovak, M.A.; Chang, I.; Choong, N.; Hack, S.P.; McArthur, G.A.; Ribas, A. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med., 2014, 371(20), 1867-1876.
[216]
Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; Chiarion-Sileni, V.; Lebbe, C.; Mandalà, M.; Millward, M.; Arance, A.; Bondarenko, I.; Haanen, J.B.; Hansson, J.; Utikal, J.; Ferraresi, V.; Kovalenko, N.; Mohr, P.; Probachai, V.; Schadendorf, D.; Nathan, P.; Robert, C.; Ribas, A.; DeMarini, D.J.; Irani, J.G.; Swann, S.; Legos, J.J.; Jin, F.; Mookerjee, B.; Flaherty, K. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet, 2015, 386(9992), 444-451.
[217]
Mulligan, L.M. RET revisited: expanding the oncogenic portfolio. Nat. Rev. Cancer, 2014, 14(3), 173-186.
[218]
Takeuchi, K.; Soda, M.; Togashi, Y.; Suzuki, R.; Sakata, S.; Hatano, S.; Asaka, R.; Hamanaka, W.; Ninomiya, H.; Uehara, H.; Lim Choi, Y.; Satoh, Y.; Okumura, S.; Nakagawa, K.; Mano, H.; Ishikawa, Y. RET, ROS1 and ALK fusions in lung cancer. Nat. Med., 2012, 18(3), 378-381.
[219]
Lipson, D.; Capelletti, M.; Yelensky, R.; Otto, G.; Parker, A.; Jarosz, M.; Curran, J.A.; Balasubramanian, S.; Bloom, T.; Brennan, K.W.; Donahue, A.; Downing, S.R.; Frampton, G.M.; Garcia, L.; Juhn, F.; Mitchell, K.C.; White, E.; White, J.; Zwirko, Z.; Peretz, T.; Nechushtan, H.; Soussan-Gutman, L.; Kim, J.; Sasaki, H.; Kim, H.R.; Park, S.I.; Ercan, D.; Sheehan, C.E.; Ross, J.S.; Cronin, M.T.; Jänne, P.A.; Stephens, P.J. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med., 2012, 18(3), 382-384.
[220]
Kohno, T.; Ichikawa, H.; Totoki, Y.; Yasuda, K.; Hiramoto, M.; Nammo, T.; Sakamoto, H.; Tsuta, K.; Furuta, K.; Shimada, Y.; Iwakawa, R.; Ogiwara, H.; Oike, T.; Enari, M.; Schetter, A.J.; Okayama, H.; Haugen, A.; Skaug, V.; Chiku, S.; Yamanaka, I.; Arai, Y.; Watanabe, S.; Sekine, I.; Ogawa, S.; Harris, C.C.; Tsuda, H.; Yoshida, T.; Yokota, J.; Shibata, T. KIF5B-RET fusions in lung adenocarcinoma. Nat. Med., 2012, 18(3), 375-377.
[221]
Wang, R.; Hu, H.; Pan, Y.; Li, Y.; Ye, T.; Li, C.; Luo, X.; Wang, L.; Li, H.; Zhang, Y.; Li, F.; Lu, Y.; Lu, Q.; Xu, J.; Garfield, D.; Shen, L.; Ji, H.; Pao, W.; Sun, Y.; Chen, H. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol., 2012, 30(35), 4352-4359.
[222]
Tsuta, K.; Kohno, T.; Yoshida, A.; Shimada, Y.; Asamura, H.; Furuta, K.; Kushima, R. RET-rearranged non-small-cell lung carcinoma: a clinicopathological and molecular analysis. Br. J. Cancer, 2014, 110(6), 1571-1578.
[223]
Tamura, T.; Minami, H.; Yamada, Y.; Yamamoto, N.; Shimoyama, T.; Murakami, H.; Horiike, A.; Fujisaka, Y.; Shinkai, T.; Tahara, M.; Kawada, K.; Ebi, H.; Sasaki, Y.; Jiang, H.; Saijo, N. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J. Thorac. Oncol., 2006, 1(9), 1002-1009.
[224]
Yoh, K.; Seto, T.; Satouchi, M.; Nishio, M.; Yamamoto, N.; Murakami, H.; Nogami, N.; Matsumoto, S.; Kohno, T.; Tsuta, K.; Tsuchihara, K.; Ishii, G.; Nomura, S.; Sato, A.; Ohtsu, A.; Ohe, Y.; Goto, K. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. Lancet Respir. Med., 2017, 5(1), 42-50.
[225]
Lee, S.H.; Lee, J.K.; Ahn, M.J.; Kim, D.W.; Sun, J.M.; Keam, B.; Kim, T.M.; Heo, D.S.; Ahn, J.S.; Choi, Y.L.; Min, H.S.; Jeon, Y.K.; Park, K. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: A phase II clinical trial. Ann. Oncol., 2017, 28(2), 292-297.
[226]
Subbiah, V.; Velcheti, V.; Tuch, B.B.; Ebata, K.; Busaidy, N.L.; Cabanillas, M.E.; Wirth, L.J.; Stock, S.; Smith, S.; Lauriault, V.; Corsi-Travali, S.; Henry, D.; Burkard, M.; Hamor, R.; Bouhana, K.; Winski, S.; Wallace, R.D.; Hartley, D.; Rhodes, S.; Reddy, M.; Brandhuber, B.J.; Andrews, S.; Rothenberg, S.M.; Drilon, A. Selective RET kinase inhibition for patients with RET-altered cancers. Ann. Oncol., 2018.
[227]
Drilon, A.E.; Subbiah, V.; Oxnard, G.R.; Bauer, T.M.; Velcheti, V.; Lakhani, N.J.; Besse, B.; Park, K.; Patel, J.D.; Cabanillas, M. E.; Johnson, M.L.; Reckamp, K.L.; Boni, V.; Loong, H.H.F.; Schlumberger, M.; Solomon, B.; Cruickshank, S.; Rothenberg, S. M.; Shah, M.H.; Wirth, L.J. A phase 1 study of LOXO-292, a potent and highly selective RET inhibitor, in patients with RET-altered cancers. 2018, 36(15_suppl), 102-102.
[228]
Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[229]
Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst., 1990, 82(1), 4-6.
[230]
Fidler, I.J.; Ellis, L.M. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell, 1994, 79(2), 185-188.
[231]
Wang, J.; Chen, J.; Guo, Y.; Wang, B.; Chu, H. Strategies targeting angiogenesis in advanced non-small cell lung cancer. Oncotarget, 2017, 8(32), 53854-53872.
[232]
Kurzrock, R.; Stewart, D.J. Exploring the benefit/risk associated with antiangiogenic agents for the treatment of non-small cell lung cancer patients. Clin. Cancer Res., 2017, 23(5), 1137-1148.
[233]
Kim, K.J.; Li, B.; Winer, J.; Armanini, M.; Gillett, N.; Phillips, H.S.; Ferrara, N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature, 1993, 362(6423), 841-844.
[234]
Gerber, H.P.; Kowalski, J.; Sherman, D.; Eberhard, D.A.; Ferrara, N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res., 2000, 60(22), 6253-6258.
[235]
Prewett, M.; Huber, J.; Li, Y.; Santiago, A.; O’Connor, W.; King, K.; Overholser, J.; Hooper, A.; Pytowski, B.; Witte, L.; Bohlen, P.; Hicklin, D.J. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res., 1999, 59(20), 5209-2518.
[236]
Bruns, C.J.; Shrader, M.; Harbison, M.T.; Portera, C.; Solorzano, C.C.; Jauch, K.W.; Hicklin, D.J.; Radinsky, R.; Ellis, L.M. Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int. J. Cancer, 2002, 102(2), 101-108.
[237]
Zhu, Z.; Lu, D.; Kotanides, H.; Santiago, A.; Jimenez, X.; Simcox, T.; Hicklin, D.J.; Bohlen, P.; Witte, L. Inhibition of vascular endothelial growth factor induced mitogenesis of human endothelial cells by a chimeric anti-kinase insert domain-containing receptor antibody. Cancer Lett., 1999, 136(2), 203-213.
[238]
Shaheen, R.M.; Ahmad, S.A.; Liu, W.; Reinmuth, N.; Jung, Y.D.; Tseng, W.W.; Drazan, K.E.; Bucana, C.D.; Hicklin, D.J.; Ellis, L.M. Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br. J. Cancer, 2001, 85(4), 584-589.
[239]
Shaheen, R.M.; Tseng, W.W.; Vellagas, R.; Liu, W.; Ahmad, S.A.; Jung, Y.D.; Reinmuth, N.; Drazan, K.E.; Bucana, C.D.; Hicklin, D.J.; Ellis, L.M. Effects of an antibody to vascular endothelial growth factor receptor-2 on survival, tumor vascularity, and apoptosis in a murine model of colon carcinomatosis. Int. J. Oncol., 2001, 18(2), 221-226.
[240]
Ryu, J.S.; Ryu, H.J.; Lee, S.N.; Memon, A.; Lee, S.K.; Nam, H.S.; Kim, H.J.; Lee, K.H.; Cho, J.H.; Hwang, S.S. Prognostic impact of minimal pleural effusion in non-small-cell lung cancer. J. Clin. Oncol., 2014, 32(9), 960-967.
[241]
Yano, S.; Shinohara, H.; Herbst, R.S.; Kuniyasu, H.; Bucana, C.D.; Ellis, L.M.; Fidler, I.J. Production of experimental malignant pleural effusions is dependent on invasion of the pleura and expression of vascular endothelial growth factor/vascular permeability factor by human lung cancer cells. Am. J. Pathol., 2000, 157(6), 1893-1903.
[242]
Kitamura, K.; Kubota, K.; Ando, M.; Takahashi, S.; Nishijima, N.; Sugano, T.; Toyokawa, M.; Miwa, K.; Kosaihira, S.; Noro, R.; Minegishi, Y.; Seike, M.; Yoshimura, A.; Gemma, A. Bevacizumab plus chemotherapy for advanced non-squamous non-small-cell lung cancer with malignant pleural effusion. Cancer Chemother. Pharmacol., 2013, 71(2), 457-461.
[243]
Yano, S.; Herbst, R.S.; Shinohara, H.; Knighton, B.; Bucana, C.D.; Killion, J.J.; Wood, J.; Fidler, I.J. Treatment for malignant pleural effusion of human lung adenocarcinoma by inhibition of vascular endothelial growth factor receptor tyrosine kinase phosphorylation. Clin. Cancer Res., 2000, 6(3), 957-965.
[244]
Usui, K.; Sugawara, S.; Nishitsuji, M.; Fujita, Y.; Inoue, A.; Mouri, A.; Watanabe, H.; Sakai, H.; Kinoshita, I.; Ohhara, Y.; Maemondo, M.; Kagamu, H.; Hagiwara, K.; Kobayashi, K.; Group, N.E.J.S. A phase II study of bevacizumab with carboplatin-pemetrexed in non-squamous non-small cell lung carcinoma patients with malignant pleural effusions: North East Japan Study Group Trial NEJ013A. Lung Cancer, 2016, 99, 131-136.
[245]
Lima, A.B.; Macedo, L.T.; Sasse, A.D. Addition of bevacizumab to chemotherapy in advanced non-small cell lung cancer: a systematic review and meta-analysis. PLoS One, 2011, 6(8), e22681.
[246]
Soria, J.C.; Mauguen, A.; Reck, M.; Sandler, A.B.; Saijo, N.; Johnson, D.H.; Burcoveanu, D.; Fukuoka, M.; Besse, B.; Pignon, J.P. group, m.-a. o. b. i. a. N. c. Systematic review and meta-analysis of randomised, phase II/III trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. Ann. Oncol., 2013, 24(1), 20-30.
[247]
Sandler, A.B.; Schiller, J.H.; Gray, R.; Dimery, I.; Brahmer, J.; Samant, M.; Wang, L.I.; Johnson, D.H. Retrospective evaluation of the clinical and radiographic risk factors associated with severe pulmonary hemorrhage in first-line advanced, unresectable non-small-cell lung cancer treated with Carboplatin and Paclitaxel plus bevacizumab. J. Clin. Oncol., 2009, 27(9), 1405-1412.
[248]
Johnson, D.H.; Fehrenbacher, L.; Novotny, W.F.; Herbst, R.S.; Nemunaitis, J.J.; Jablons, D.M.; Langer, C.J.; DeVore, R.F.; Gaudreault, J.; Damico, L.A.; Holmgren, E.; Kabbinavar, F. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol., 2004, 22(11), 2184-2191.
[249]
Reck, M.; von Pawel, J.; Zatloukal, P.; Ramlau, R.; Gorbounova, V.; Hirsh, V.; Leighl, N.; Mezger, J.; Archer, V.; Moore, N.; Manegold, C.; Group, B.S. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann. Oncol., 2010, 21(9), 1804-1809.
[250]
Zhou, C.; Wu, Y.L.; Chen, G.; Liu, X.; Zhu, Y.; Lu, S.; Feng, J.; He, J.; Han, B.; Wang, J.; Jiang, G.; Hu, C.; Zhang, H.; Cheng, G.; Song, X.; Lu, Y.; Pan, H.; Zheng, W.; Yin, A.Y. Beyond: A randomized, double-blind, placebo-controlled, multicenter, phase III study of first-line carboplatin/paclitaxel plus bevacizumab or placebo in Chinese patients with advanced or recurrent nonsquamous non-small-cell lung cancer. J. Clin. Oncol., 2015, 33(19), 2197-2204.
[251]
Socinski, M.A.; Langer, C.J.; Huang, J.E.; Kolb, M.M.; Compton, P.; Wang, L.; Akerley, W. Safety of bevacizumab in patients with non-small-cell lung cancer and brain metastases. J. Clin. Oncol., 2009, 27(31), 5255-5261.
[252]
Besse, B.; Le Moulec, S.; Mazières, J.; Senellart, H.; Barlesi, F.; Chouaid, C.; Dansin, E.; Bérard, H.; Falchero, L.; Gervais, R.; Robinet, G.; Ruppert, A.M.; Schott, R.; Léna, H.; Clément-Duchêne, C.; Quantin, X.; Souquet, P.J.; Trédaniel, J.; Moro-Sibilot, D.; Pérol, M.; Madroszyk, A.C.; Soria, J.C. Bevacizumab in patients with nonsquamous non-small cell lung cancer and asymptomatic, untreated brain metastases (Brain): A nonrandomized, phase II study. Clin. Cancer Res., 2015, 21(8), 1896-1903.
[253]
Barlesi, F.; Gervais, R.; Lena, H.; Hureaux, J.; Berard, H.; Paillotin, D.; Bota, S.; Monnet, I.; Chajara, A.; Robinet, G. Pemetrexed and cisplatin as first-line chemotherapy for advanced non-small-cell lung cancer (NSCLC) with asymptomatic inoperable brain metastases: a multicenter phase II trial (GFPC 07-01). Ann. Oncol., 2011, 22(11), 2466-2470.
[254]
Patel, J.D.; Socinski, M.A.; Garon, E.B.; Reynolds, C.H.; Spigel, D.R.; Olsen, M.R.; Hermann, R.C.; Jotte, R.M.; Beck, T.; Richards, D.A.; Guba, S.C.; Liu, J.; Frimodt-Moller, B.; John, W.J.; Obasaju, C.K.; Pennella, E.J.; Bonomi, P.; Govindan, R. PointBreak: a randomized phase III study of pemetrexed plus carboplatin and bevacizumab followed by maintenance pemetrexed and bevacizumab versus paclitaxel plus carboplatin and bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small-cell lung cancer. J. Clin. Oncol., 2013, 31(34), 4349-4357.
[255]
Zinner, R.G.; Obasaju, C.K.; Spigel, D.R.; Weaver, R.W.; Beck, J.T.; Waterhouse, D.M.; Modiano, M.R.; Hrinczenko, B.; Nikolinakos, P.G.; Liu, J.; Koustenis, A.G.; Winfree, K.B.; Melemed, S.A.; Guba, S.C.; Ortuzar, W.I.; Desaiah, D.; Treat, J.A.; Govindan, R.; Ross, H.J. Pronounce: Randomized, open-label, phase III study of first-line pemetrexed + carboplatin followed by maintenance pemetrexed versus paclitaxel + carboplatin + bevacizumab followed by maintenance bevacizumab in patients ith advanced nonsquamous non-small-cell lung cancer. J. Thorac. Oncol., 2015, 10(1), 134-142.
[256]
Barlesi, F.; Scherpereel, A.; Rittmeyer, A.; Pazzola, A.; Ferrer Tur, N.; Kim, J.H.; Ahn, M.J.; Aerts, J.G.; Gorbunova, V.; Vikström, A.; Wong, E.K.; Perez-Moreno, P.; Mitchell, L.; Groen, H.J. Randomized phase III trial of maintenance bevacizumab with or without pemetrexed after first-line induction with bevacizumab, cisplatin, and pemetrexed in advanced nonsquamous non-small-cell lung cancer: AVAPERL (MO22089). J. Clin. Oncol., 2013, 31(24), 3004-3011.
[257]
Takeda, M.; Yamanaka, T.; Seto, T.; Hayashi, H.; Azuma, K.; Okada, M.; Sugawara, S.; Daga, H.; Hirashima, T.; Yonesaka, K.; Urata, Y.; Murakami, H.; Saito, H.; Kubo, A.; Sawa, T.; Miyahara, E.; Nogami, N.; Nakagawa, K.; Nakanishi, Y.; Okamoto, I. Bevacizumab beyond disease progression after first-line treatment with bevacizumab plus chemotherapy in advanced nonsquamous non-small cell lung cancer (West Japan Oncology Group 5910L): An open-label, randomized, phase 2 trial. Cancer, 2016, 122(7), 1050-1059.
[258]
Bennouna, J.; Castro, J.D.; Dingemans, A.-M.C.; Griesinger, F.; Grossi, F.; Langer, C.J.; Ohe, Y.; Syrigos, K.N.; Thatcher, N.; Das-Gupta, A.; Donica, M.; Smoljanovic, V.; Gridelli, C. Efficacy and safety results from AvaALL: An open-label, randomized phase III trial of standard of care (SOC) with or without continuous bevacizumab (Bev) treatment beyond progression (PD) in patients (pts) with advanced non-small cell lung cancer (NSCLC) progressing after first-line Bev and chemotherapy (chemo). 2017, 35(15suppl), 9004-9004.
[259]
Karkkainen, M.J.; Haiko, P.; Sainio, K.; Partanen, J.; Taipale, J.; Petrova, T.V.; Jeltsch, M.; Jackson, D.G.; Talikka, M.; Rauvala, H.; Betsholtz, C.; Alitalo, K. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol., 2004, 5(1), 74-80.
[260]
Jeltsch, M.; Kaipainen, A.; Joukov, V.; Meng, X.; Lakso, M.; Rauvala, H.; Swartz, M.; Fukumura, D.; Jain, R.K.; Alitalo, K. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science, 1997, 276(5317), 1423-1425.
[261]
Veikkola, T.; Jussila, L.; Makinen, T.; Karpanen, T.; Jeltsch, M.; Petrova, T.V.; Kubo, H.; Thurston, G.; McDonald, D.M.; Achen, M.G.; Stacker, S.A.; Alitalo, K. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J., 2001, 20(6), 1223-1231.
[262]
Hu, X.; Luo, J. Heterogeneity of tumor lymphangiogenesis: progress and prospects. Cancer Sci., 2018.
[263]
Reck, M.; Paz-Ares, L.; Bidoli, P.; Cappuzzo, F.; Dakhil, S.; Moro-Sibilot, D.; Borghaei, H.; Johnson, M.; Jotte, R.; Pennell, N.A.; Shepherd, F.A.; Tsao, A.; Thomas, M.; Carter, G.C.; Chan-Diehl, F.; Alexandris, E.; Lee, P.; Zimmermann, A.; Sashegyi, A.; Pérol, M. Outcomes in patients with aggressive or refractory disease from REVEL: A randomized phase III study of docetaxel with ramucirumab or placebo for second-line treatment of stage IV non-small-cell lung cancer. Lung Cancer, 2017, 112, 181-187.
[264]
Schreiber, R.D.; Old, L.J.; Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 2011, 331(6024), 1565-1570.
[265]
Chen, D.S.; Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[266]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[267]
Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; Carcereny, E.; Ahn, M.J.; Felip, E.; Lee, J.S.; Hellmann, M.D.; Hamid, O.; Goldman, J.W.; Soria, J.C.; Dolled-Filhart, M.; Rutledge, R.Z.; Zhang, J.; Lunceford, J.K.; Rangwala, R.; Lubiniecki, G.M.; Roach, C.; Emancipator, K.; Gandhi, L.; Investigators, K. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(21), 2018-2028.
[268]
McLaughlin, J.; Han, G.; Schalper, K.A.; Carvajal-Hausdorf, D.; Pelekanou, V.; Rehman, J.; Velcheti, V.; Herbst, R.; LoRusso, P.; Rimm, D.L. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol., 2016, 2(1), 46-54.
[269]
Sheng, J.; Fang, W.; Yu, J.; Chen, N.; Zhan, J.; Ma, Y.; Yang, Y.; Huang, Y. Yanhuang; Zhao, H.; Zhang, L. Expression of programmed death ligand-1 on tumor cells varies pre and post chemotherapy in non-small cell lung cancer. Sci. Rep., 2016, 6, 20090.
[270]
Lin, K.; Cheng, J.; Yang, T.; Li, Y.; Zhu, B. EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κB. Biochem. Biophys. Res. Commun., 2015, 463(1-2), 95-101.
[271]
Grigg, C.; Rizvi, N.A. PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction? J. Immunother. Cancer, 2016, 4, 48.
[272]
Sholl, L.M.; Aisner, D.L.; Allen, T.C.; Beasley, M.B.; Borczuk, A.C.; Cagle, P.T.; Capelozzi, V.; Dacic, S.; Hariri, L.; Kerr, K.M.; Lantuejoul, S.; Mino-Kenudson, M.; Raparia, K.; Rekhtman, N.; Roy-Chowdhuri, S.; Thunnissen, E.; Tsao, M.S.; Yatabe, Y. Society, M. o. P. P. Programmed death ligand-1 immunohistochemistry--a new challenge for pathologists: A perspective from members of the pulmonary pathology society. Arch. Pathol. Lab. Med., 2016, 140(4), 341-344.
[273]
Hansen, A.R.; Siu, L.L. PD-L1 Testing in Cancer: Challenges in Companion Diagnostic Development. JAMA Oncol., 2016, 2(1), 15-16.
[274]
Hirsch, F.R.; McElhinny, A.; Stanforth, D.; Ranger-Moore, J.; Jansson, M.; Kulangara, K.; Richardson, W.; Towne, P.; Hanks, D.; Vennapusa, B.; Mistry, A.; Kalamegham, R.; Averbuch, S.; Novotny, J.; Rubin, E.; Emancipator, K.; McCaffery, I.; Williams, J.A.; Walker, J.; Longshore, J.; Tsao, M.S.; Kerr, K.M. PD-L1 Immunohistochemistry assays for lung cancer: Results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J. Thorac. Oncol., 2017, 12(2), 208-222.
[275]
Ilie, M.; Long-Mira, E.; Bence, C.; Butori, C.; Lassalle, S.; Bouhlel, L.; Fazzalari, L.; Zahaf, K.; Lalvée, S.; Washetine, K.; Mouroux, J.; Vénissac, N.; Poudenx, M.; Otto, J.; Sabourin, J.C.; Marquette, C.H.; Hofman, V.; Hofman, P. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: A potential issue for anti-PD-L1 therapeutic strategies. Ann. Oncol., 2016, 27(1), 147-153.
[276]
Kim, M.Y.; Koh, J.; Kim, S.; Go, H.; Jeon, Y.K.; Chung, D.H. Clinicopathological analysis of PD-L1 and PD-L2 expression in pulmonary squamous cell carcinoma: Comparison with tumor-infiltrating T cells and the status of oncogenic drivers. Lung Cancer, 2015, 88(1), 24-33.
[277]
Hegde, P.S.; Karanikas, V.; Evers, S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res., 2016, 22(8), 1865-1874.
[278]
Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; Miller, M.L.; Rekhtman, N.; Moreira, A.L.; Ibrahim, F.; Bruggeman, C.; Gasmi, B.; Zappasodi, R.; Maeda, Y.; Sander, C.; Garon, E.B.; Merghoub, T.; Wolchok, J.D.; Schumacher, T.N.; Chan, T.A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230), 124-128.
[279]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A.; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[280]
Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; Boyault, S.; Burkhardt, B.; Butler, A.P.; Caldas, C.; Davies, H.R.; Desmedt, C.; Eils, R.; Eyfjörd, J.E.; Foekens, J.A.; Greaves, M.; Hosoda, F.; Hutter, B.; Ilicic, T.; Imbeaud, S.; Imielinski, M.; Imielinsk, M.; Jäger, N.; Jones, D.T.; Jones, D.; Knappskog, S.; Kool, M.; Lakhani, S.R.; López-Otín, C.; Martin, S.; Munshi, N.C.; Nakamura, H.; Northcott, P.A.; Pajic, M.; Papaemmanuil, E.; Paradiso, A.; Pearson, J.V.; Puente, X.S.; Raine, K.; Ramakrishna, M.; Richardson, A.L.; Richter, J.; Rosenstiel, P.; Schlesner, M.; Schumacher, T.N.; Span, P.N.; Teague, J.W.; Totoki, Y.; Tutt, A.N.; Valdés-Mas, R.; van Buuren, M.M.; van ’t Veer, L.; Vincent-Salomon, A.; Waddell, N.; Yates, L.R.; Zucman-Rossi, J.; Futreal, P.A.; McDermott, U.; Lichter, P.; Meyerson, M.; Grimmond, S.M.; Siebert, R.; Campo, E.; Shibata, T.; Pfister, S.M.; Campbell, P.J.; Stratton, M.R.; Initiative, A.P.C.G.; Consortium, I.B.C. Consortium, I.M.-S.; PedBrain, I. Signatures of mutational processes in human cancer. Nature, 2013, 500(7463), 415-421.
[281]
Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekhtman, N.; Hollmann, T.; Schalper, K.A.; Gainor, J.F.; Shen, R.; Ni, A.; Arbour, K.C.; Merghoub, T.; Wolchok, J.; Snyder, A.; Chaft, J.E.; Kris, M.G.; Rudin, C.M.; Socci, N.D.; Berger, M.F.; Taylor, B.S.; Zehir, A.; Solit, D.B.; Arcila, M.E.; Ladanyi, M.; Riely, G.J.; Schultz, N.; Hellmann, M.D. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol., 2018, 36(7), 633-641.
[282]
Hellmann, M.D.; Nathanson, T.; Rizvi, H.; Creelan, B.C.; Sanchez-Vega, F.; Ahuja, A.; Ni, A.; Novik, J.B.; Mangarin, L.M.B.; Abu-Akeel, M.; Liu, C.; Sauter, J.L.; Rekhtman, N.; Chang, E.; Callahan, M.K.; Chaft, J.E.; Voss, M.H.; Tenet, M.; Li, X.M.; Covello, K.; Renninger, A.; Vitazka, P.; Geese, W.J.; Borghaei, H.; Rudin, C.M.; Antonia, S.J.; Swanton, C.; Hammerbacher, J.; Merghoub, T.; McGranahan, N.; Snyder, A.; Wolchok, J.D. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell, 2018, 33(5), 843-852.
[283]
Gubin, M.M.; Esaulova, E.; Ward, J.P.; Malkova, O.N.; Runci, D.; Wong, P.; Noguchi, T.; Arthur, C.D.; Meng, W.; Alspach, E.; Medrano, R.F.V.; Fronick, C.; Fehlings, M.; Newell, E.W.; Fulton, R.S.; Sheehan, K.C.F.; Oh, S.T.; Schreiber, R.D.; Artyomov, M.N. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell, 2018, 175(4), 1014-1030.
[284]
Haanen, J.B.; Thienen, H.; Blank, C.U. Toxicity patterns with immunomodulating antibodies and their combinations. Semin. Oncol., 2015, 42(3), 423-428.
[285]
Weber, J.S.; Yang, J.C.; Atkins, M.B.; Disis, M.L. Toxicities of immunotherapy for the practitioner. J. Clin. Oncol., 2015, 33(18), 2092-2099.
[286]
Good-Jacobson, K.L.; Szumilas, C.G.; Chen, L.; Sharpe, A.H.; Tomayko, M.M.; Shlomchik, M.J. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat. Immunol., 2010, 11(6), 535-542.
[287]
Zitvogel, L.; Kroemer, G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. OncoImmunology, 2012, 1(8), 1223-1225.
[288]
Iwama, S.; De Remigis, A.; Callahan, M.K.; Slovin, S.F.; Wolchok, J.D.; Caturegli, P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med., 2014, 6(230), 230ra45.
[289]
Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med., 2018, 378(2), 158-168.
[290]
Nishino, M.; Giobbie-Hurder, A.; Hatabu, H.; Ramaiya, N.H.; Hodi, F.S. Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: A systematic review and meta-analysis. JAMA Oncol., 2016, 2(12), 1607-1616.
[291]
Nishino, M.; Ramaiya, N.H.; Awad, M.M.; Sholl, L.M.; Maattala, J.A.; Taibi, M.; Hatabu, H.; Ott, P.A.; Armand, P.F.; Hodi, F.S. PD-1 Inhibitor-related pneumonitis in advanced cancer patients: Radiographic patterns and clinical course. Clin. Cancer Res., 2016, 22(24), 6051-6060.
[292]
Weber, J.S.; Kähler, K.C.; Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol., 2012, 30(21), 2691-2697.
[293]
Fecher, L.A.; Agarwala, S.S.; Hodi, F.S.; Weber, J.S. Ipilimumab and its toxicities: A multidisciplinary approach. Oncologist, 2013, 18(6), 733-743.
[294]
Wellenstein, M.D.; de Visser, K.E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity, 2018, 48(3), 399-416.
[295]
Quigley, D.; Silwal-Pandit, L.; Dannenfelser, R.; Langerød, A.; Vollan, H.K.; Vaske, C.; Siegel, J.U.; Troyanskaya, O.; Chin, S.F.; Caldas, C.; Balmain, A.; Børresen-Dale, A.L.; Kristensen, V. Lymphocyte Invasion in IC10/Basal-Like Breast Tumors Is Associated with Wild-Type TP53. Mol. Cancer Res., 2015, 13(3), 493-501.
[296]
Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 2015, 160(1-2), 48-61.
[297]
Balli, D.; Rech, A.J.; Stanger, B.Z.; Vonderheide, R.H. Immune cytolytic activity stratifies molecular subsets of human pancreatic cancer. Clin. Cancer Res., 2017, 23(12), 3129-3138.
[298]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Reports, 2017, 18(1), 248-262.
[299]
Wang, Q.; Hu, B.; Hu, X.; Kim, H.; Squatrito, M.; Scarpace, L.; deCarvalho, A.C.; Lyu, S.; Li, P.; Li, Y.; Barthel, F.; Cho, H.J.; Lin, Y.H.; Satani, N.; Martinez-Ledesma, E.; Zheng, S.; Chang, E.; Sauvé, C.G.; Olar, A.; Lan, Z.D.; Finocchiaro, G.; Phillips, J.J.; Berger, M.S.; Gabrusiewicz, K.R.; Wang, G.; Eskilsson, E.; Hu, J.; Mikkelsen, T.; DePinho, R.A.; Muller, F.; Heimberger, A.B.; Sulman, E.P.; Nam, D.H.; Verhaak, R.G.W. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell, 2017, 32(1), 42-56.
[300]
Biton, J.; Mansuet-Lupo, A.; Pécuchet, N.; Alifano, M.; Ouakrim, H.; Arrondeau, J.; Boudou-Rouquette, P.; Goldwasser, F.; Leroy, K.; Goc, J.; Wislez, M.; Germain, C.; Laurent-Puig, P.; Dieu-Nosjean, M.C.; Cremer, I.; Herbst, R.; Blons, H.F.; Damotte, D. Clin. Cancer Res., 2018.
[301]
Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; Ali, S.M.; Elvin, J.A.; Singal, G.; Ross, J.S.; Fabrizio, D.; Szabo, P.M.; Chang, H.; Sasson, A.; Srinivasan, S.; Kirov, S.; Szustakowski, J.; Vitazka, P.; Edwards, R.; Bufill, J.A.; Sharma, N.; Ou, S.I.; Peled, N.; Spigel, D.R.; Rizvi, H.; Aguilar, E.J.; Carter, B.W.; Erasmus, J.; Halpenny, D.F.; Plodkowski, A.J.; Long, N.M.; Nishino, M.; Denning, W.L.; Galan-Cobo, A.; Hamdi, H.; Hirz, T.; Tong, P.; Wang, J.; Rodriguez-Canales, J.; Villalobos, P.A.; Parra, E.R.; Kalhor, N.; Sholl, L.M.; Sauter, J.L.; Jungbluth, A.A.; Mino-Kenudson, M.; Azimi, R.; Elamin, Y.Y.; Zhang, J.; Leonardi, G.C.; Jiang, F.; Wong, K.K.; Lee, J.J.; Papadimitrakopoulou, V.A.; Wistuba, I.I.; Miller, V.A.; Frampton, G.M.; Wolchok, J.D.; Shaw, A.T.; Jänne, P.A.; Stephens, P.J.; Rudin, C.M.; Geese, W.J.; Albacker, L.A.; Heymach, J.V. Mutations and PD-1 Inhibitor resistance. Cancer Discov., 2018, 8(7), 822-835.
[302]
Akbay, E.A.; Koyama, S.; Liu, Y.; Dries, R.; Bufe, L.E.; Silkes, M.; Alam, M.M.; Magee, D.M.; Jones, R.; Jinushi, M.; Kulkarni, M.; Carretero, J.; Wang, X.; Warner-Hatten, T.; Cavanaugh, J.D.; Osa, A.; Kumanogoh, A.; Freeman, G.J.; Awad, M.M.; Christiani, D.C.; Bueno, R.; Hammerman, P.S.; Dranoff, G.; Wong, K.K. Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J. Thorac. Oncol., 2017, 12(8), 1268-1279.
[303]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[304]
Okazaki, T.; Chikuma, S.; Iwai, Y.; Fagarasan, S.; Honjo, T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol., 2013, 14(12), 1212-1218.
[305]
Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26, 677-704.
[306]
Hamanishi, J.; Mandai, M.; Iwasaki, M.; Okazaki, T.; Tanaka, Y.; Yamaguchi, K.; Higuchi, T.; Yagi, H.; Takakura, K.; Minato, N.; Honjo, T.; Fujii, S. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(9), 3360-3365.
[307]
Okazaki, T.; Wang, J. PD-1/PD-L pathway and autoimmunity. Autoimmunity, 2005, 38(5), 353-357.
[308]
Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 1999, 11(2), 141-151.
[309]
Nishimura, H.; Okazaki, T.; Tanaka, Y.; Nakatani, K.; Hara, M.; Matsumori, A.; Sasayama, S.; Mizoguchi, A.; Hiai, H.; Minato, N.; Honjo, T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science, 2001, 291(5502), 319-322.
[310]
Wang, J.; Yoshida, T.; Nakaki, F.; Hiai, H.; Okazaki, T.; Honjo, T. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11823-11828.
[311]
Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; Gilson, M.M.; Wang, C.; Selby, M.; Taube, J.M.; Anders, R.; Chen, L.; Korman, A.J.; Pardoll, D.M.; Lowy, I.; Topalian, S.L. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol., 2010, 28(19), 3167-3175.
[312]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[313]
Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; Waterhouse, D.; Ready, N.; Gainor, J.; Arén Frontera, O.; Havel, L.; Steins, M.; Garassino, M.C.; Aerts, J.G.; Domine, M.; Paz-Ares, L.; Reck, M.; Baudelet, C.; Harbison, C.T.; Lestini, B.; Spigel, D.R. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(2), 123-135.
[314]
Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R.; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[315]
Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.E.; Badin, F.; Ready, N.; Hiltermann, T.J.N.; Nair, S.; Juergens, R.; Peters, S.; Minenza, E.; Wrangle, J.M.; Rodriguez-Abreu, D.; Borghaei, H.; Blumenschein, G.R.; Villaruz, L.C.; Havel, L.; Krejci, J.; Corral Jaime, J.; Chang, H.; Geese, W.J.; Bhagavatheeswaran, P.; Chen, A.C.; Socinski, M.A.; Investigators, C. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med., 2017, 376(25), 2415-2426.
[316]
Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; Majem, M.; Fidler, M.J.; de Castro, G.; Garrido, M.; Lubiniecki, G.M.; Shentu, Y.; Im, E.; Dolled-Filhart, M.; Garon, E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet, 2016, 387(10027), 1540-1550.
[317]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; O’Brien, M.; Rao, S.; Hotta, K.; Leiby, M.A.; Lubiniecki, G.M.; Shentu, Y.; Rangwala, R.; Brahmer, J.R.; Investigators, K. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[318]
Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; Cheng, S.Y.; Bischoff, H.G.; Peled, N.; Grossi, F.; Jennens, R.R.; Reck, M.; Hui, R.; Garon, E.B.; Boyer, M.; Rubio-Viqueira, B.; Novello, S.; Kurata, T.; Gray, J.E.; Vida, J.; Wei, Z.; Yang, J.; Raftopoulos, H.; Pietanza, M.C.; Garassino, M.C.; Investigators, K. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med., 2018, 378(22), 2078-2092.
[319]
Paz-Ares, L.G.; Luft, A.; Tafreshi, A.; Gumus, M.; Mazieres, J.; Hermes, B.; Senler, F.C.; Fülöp, A.; Rodriguez-Cid, J.; Sugawara, S.; Cheng, Y.; Novello, S.; Halmos, B.; Shentu, Y.; Kowalski, D. Phase 3 study of carboplatin-paclitaxel/nab-paclitaxel (Chemo) with or without pembrolizumab (Pembro) for patients (Pts) with metastatic squamous (Sq) non-small cell lung cancer (NSCLC). J.Clin. Oncol, 2018, 36(15_suppl), 105-105.
[320]
Keir, M.E.; Liang, S.C.; Guleria, I.; Latchman, Y.E.; Qipo, A.; Albacker, L.A.; Koulmanda, M.; Freeman, G.J.; Sayegh, M.H.; Sharpe, A.H. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med., 2006, 203(4), 883-895.
[321]
Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; Braiteh, F.; Waterkamp, D.; He, P.; Zou, W.; Chen, D.S.; Yi, J.; Sandler, A.; Rittmeyer, A.; Group, P.S. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet, 2016, 387(10030), 1837-1846.
[322]
Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; Cortinovis, D.L.; Leach, J.; Polikoff, J.; Barrios, C.; Kabbinavar, F.; Frontera, O.A.; De Marinis, F.; Turna, H.; Lee, J.S.; Ballinger, M.; Kowanetz, M.; He, P.; Chen, D.S.; Sandler, A.; Gandara, D.R.; Group, O.S. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet, 2017, 389(10066), 255-265.
[323]
Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.J.; Stroyakovskiy, D.; Nogami, N.; Rodriguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; Finley, G.G.; Kelsch, C.; Lee, A.; Coleman, S.; Shen, Y.; Kowanetz, M.; Lopez-Chavez, A.; Sandler, A.; Reck, M. Overall survival (OS) analysis of IMpower150, a randomized Ph 3 study of atezolizumab (atezo) + chemotherapy (chemo) ± bevacizumab (bev) vs chemo + bev in 1L nonsquamous (NSQ) NSCLC. J. Clin. Oncol, 2018, 36(15-suppl), 9002-9002.
[324]
Jotte, R.M.; Cappuzzo, F.; Vynnychenko, I.; Stroyakovskiy, D.; Abreu, D.R.; Hussein, M.A.; Soo, R.A.; Conter, H.J.; Kozuki, T.; Silva, C.; Graupner, V.; Sun, S.; Lin, R.S.; Kelsch, C.; Kowanetz, M.; Hoang, T.; Sandler, A.; Socinski, M.A. IMpower131: Primary PFS and safety analysis of a randomized phase III study of atezolizumab + carboplatin + paclitaxel or nab-paclitaxel vs carboplatin + nab-paclitaxel as 1L therapy in advanced squamous NSCLC. J.Clin. Oncol, 2018, 36(18_suppl), LBA9000-LBA9000.
[325]
Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; Cho, B.C.; Bourhaba, M.; Quantin, X.; Tokito, T.; Mekhail, T.; Planchard, D.; Kim, Y.C.; Karapetis, C.S.; Hiret, S.; Ostoros, G.; Kubota, K.; Gray, J.E.; Paz-Ares, L.; de Castro Carpeño, J.; Wadsworth, C.; Melillo, G.; Jiang, H.; Huang, Y.; Dennis, P.A.; Özgüroğlu, M.; Investigators, P. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med., 2017, 377(20), 1919-1929.
[326]
Gulley, J.L.; Rajan, A.; Spigel, D.R.; Iannotti, N.; Chandler, J.; Wong, D.J.L.; Leach, J.; Edenfield, W.J.; Wang, D.; Grote, H.J.; Heydebreck, A.V.; Chin, K.; Cuillerot, J.M.; Kelly, K. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): Dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol., 2017, 18(5), 599-610.
[327]
Rudd, C.E.; Taylor, A.; Schneider, H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev., 2009, 229(1), 12-26.
[328]
Tivol, E.A.; Borriello, F.; Schweitzer, A.N.; Lynch, W.P.; Bluestone, J.A.; Sharpe, A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3(5), 541-547.
[329]
Waterhouse, P.; Penninger, J.M.; Timms, E.; Wakeham, A.; Shahinian, A.; Lee, K.P.; Thompson, C.B.; Griesser, H.; Mak, T.W. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995, 270(5238), 985-988.
[330]
Hurwitz, A.A.; Foster, B.A.; Kwon, E.D.; Truong, T.; Choi, E.M.; Greenberg, N.M.; Burg, M.B.; Allison, J.P. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res., 2000, 60(9), 2444-2448.
[331]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[332]
Hodi, F.S.; Lee, S.; McDermott, D.F.; Rao, U.N.; Butterfield, L.H.; Tarhini, A.A.; Leming, P.; Puzanov, I.; Shin, D.; Kirkwood, J.M. Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. JAMA, 2014, 312(17), 1744-1753.
[333]
Ribas, A.; Hodi, F.S.; Callahan, M.; Konto, C.; Wolchok, J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med., 2013, 368(14), 1365-1366.
[334]
Maker, A.V.; Phan, G.Q.; Attia, P.; Yang, J.C.; Sherry, R.M.; Topalian, S.L.; Kammula, U.S.; Royal, R.E.; Haworth, L.R.; Levy, C.; Kleiner, D.; Mavroukakis, S.A.; Yellin, M.; Rosenberg, S.A. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: A phase I/II study. Ann. Surg. Oncol., 2005, 12(12), 1005-1016.
[335]
Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J.F.; Testori, A.; Grob, J.J.; Davidson, N.; Richards, J.; Maio, M.; Hauschild, A.; Miller, W.H.; Gascon, P.; Lotem, M.; Harmankaya, K.; Ibrahim, R.; Francis, S.; Chen, T.T.; Humphrey, R.; Hoos, A.; Wolchok, J.D. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med., 2011, 364(26), 2517-2526.
[336]
Hellmann, M.D.; Ciuleanu, T.E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; Borghaei, H.; Ramalingam, S.S.; Brahmer, J.; Reck, M.; O’Byrne, K.J.; Geese, W.J.; Green, G.; Chang, H.; Szustakowski, J.; Bhagavatheeswaran, P.; Healey, D.; Fu, Y.; Nathan, F.; Paz-Ares, L. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med., 2018, 378(22), 2093-2104.
[337]
Tarhini, A.A.; Kirkwood, J.M. Tremelimumab, a fully human monoclonal IgG2 antibody against CTLA4 for the potential treatment of cancer. Curr. Opin. Mol. Ther., 2007, 9(5), 505-514.
[338]
Antonia, S.; Goldberg, S.B.; Balmanoukian, A.; Chaft, J.E.; Sanborn, R.E.; Gupta, A.; Narwal, R.; Steele, K.; Gu, Y.; Karakunnel, J.J.; Rizvi, N.A. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol., 2016, 17(3), 299-308.
[339]
Lih, C.J.; Harrington, R.D.; Sims, D.J.; Harper, K.N.; Bouk, C.H.; Datta, V.; Yau, J.; Singh, R.R.; Routbort, M.J.; Luthra, R.; Patel, K.P.; Mantha, G.S.; Krishnamurthy, S.; Ronski, K.; Walther, Z.; Finberg, K.E.; Canosa, S.; Robinson, H.; Raymond, A.; Le, L.P.; McShane, L.M.; Polley, E.C.; Conley, B.A.; Doroshow, J.H.; Iafrate, A.J.; Sklar, J.L.; Hamilton, S.R.; Williams, P.M. Analytical validation of the next-generation sequencing assay for a nationwide signal-finding clinical trial: Molecular analysis for therapy choice clinical trial. J. Mol. Diagn., 2017, 19(2), 313-327.
[340]
Pennell, N.A.; Mutebi, A.; Zhou, Z.-Y.; Ricculli, M.L.; Tang, W.; Wang, H.; Guerin, A.; Arnhart, T.; Culver, K.W.; Otterson, G.A. Economic impact of next generation sequencing vs sequential single- gene testing modalities to detect genomic alterations in metastatic non-small cell lung cancer using a decision analytic model. J.Clin. Oncol., 2018, 36(15_suppl), 9031-9031.
[341]
Gandara, D.R.; Paul, S.M.; Kowanetz, M.; Schleifman, E.; Zou, W.; Li, Y.; Rittmeyer, A.; Fehrenbacher, L.; Otto, G.; Malboeuf, C.; Lieber, D.S.; Lipson, D.; Silterra, J.; Amler, L.; Riehl, T.; Cummings, C.A.; Hegde, P.S.; Sandler, A.; Ballinger, M.; Fabrizio, D.; Mok, T.; Shames, D.S. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat. Med., 2018.
[342]
Crystal, A.S.; Shaw, A.T.; Sequist, L.V.; Friboulet, L.; Niederst, M.J.; Lockerman, E.L.; Frias, R.L.; Gainor, J.F.; Amzallag, A.; Greninger, P.; Lee, D.; Kalsy, A.; Gomez-Caraballo, M.; Elamine, L.; Howe, E.; Hur, W.; Lifshits, E.; Robinson, H.E.; Katayama, R.; Faber, A.C.; Awad, M.M.; Ramaswamy, S.; Mino-Kenudson, M.; Iafrate, A.J.; Benes, C.H.; Engelman, J.A. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science, 2014, 346(6216), 1480-1486.
[343]
Ohashi, Y.; Okamura, M.; Katayama, R.; Fang, S.; Tsutsui, S.; Akatsuka, A.; Shan, M.; Choi, H.W.; Fujita, N.; Yoshimatsu, K.; Shiina, I.; Yamori, T.; Dan, S. Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors. Oncotarget, 2018, 9(2), 1641-1655.
[344]
Tanimoto, A.; Takeuchi, S.; Arai, S.; Fukuda, K.; Yamada, T.; Roca, X.; Ong, S.T.; Yano, S. Histone deacetylase 3 inhibition overcomes. Clin. Cancer Res., 2017, 23(12), 3139-3149.
[345]
Chen, H.; Wang, Y.; Lin, C.; Lu, C.; Han, R.; Jiao, L.; Li, L.; He, Y. Vorinostat and metformin sensitize EGFR-TKI resistant NSCLC cells via BIM-dependent apoptosis induction. Oncotarget, 2017, 8(55), 93825-93838.
[346]
Suda, K.; Sato, K.; Mizuuchi, H.; Kobayashi, Y.; Shimoji, M.; Tomizawa, K.; Takemoto, T.; Iwasaki, T.; Sakaguchi, M.; Mitsudomi, T. Recent evidence, advances, and current practices in surgical treatment of lung cancer. Respir. Investig., 2014, 52(6), 322-329.
[347]
Postoperative radiotherapy in non-small-cell lung cancer: Systematic review and meta-analysis of individual patient data from nine randomised controlled trials. PORT Meta-analysis Trialists Group. Lancet, 1998, 352(9124), 257-263.
[348]
Douillard, J.Y.; Rosell, R.; De Lena, M.; Carpagnano, F.; Ramlau, R.; Gonzáles-Larriba, J.L.; Grodzki, T.; Pereira, J.R.; Le Groumellec, A.; Lorusso, V.; Clary, C.; Torres, A.J.; Dahabreh, J.; Souquet, P.J.; Astudillo, J.; Fournel, P.; Artal-Cortes, A.; Jassem, J.; Koubkova, L.; His, P.; Riggi, M.; Hurteloup, P. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): A randomised controlled trial. Lancet Oncol., 2006, 7(9), 719-727.
[349]
Pignon, J.P.; Tribodet, H.; Scagliotti, G.V.; Douillard, J.Y.; Shepherd, F.A.; Stephens, R.J.; Dunant, A.; Torri, V.; Rosell, R.; Seymour, L.; Spiro, S.G.; Rolland, E.; Fossati, R.; Aubert, D.; Ding, K.; Waller, D.; Le Chevalier, T.; Group, L.C. Lung adjuvant cisplatin evaluation: A pooled analysis by the LACE Collaborative Group. J. Clin. Oncol., 2008, 26(21), 3552-3559.
[350]
Pollock, R.E.; Roth, J.A. Cancer-induced immunosuppression: Implications for therapy? Semin. Surg. Oncol., 1989, 5(6), 414-419.
[351]
Kadosawa, T.; Watabe, A. The effects of surgery-induced immunosuppression and angiogenesis on tumour growth. Vet. J., 2015, 205(2), 175-179.
[352]
Gobbini, E.; Giaj Levra, M. Is there a room for immune checkpoint inhibitors in early stage non-small cell lung cancer? J. Thorac. Dis., 2018, 10(Suppl. 13), S1427-S1437.
[353]
Demaria, S.; Formenti, S.C. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front. Oncol., 2012, 2, 153.
[354]
Kaur, P.; Asea, A. Radiation-induced effects and the immune system in cancer. Front. Oncol., 2012, 2, 191.
[355]
Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer, 2012, 12(12), 860-875.
[356]
Green, D.R.; Ferguson, T.; Zitvogel, L.; Kroemer, G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol., 2009, 9(5), 353-363.
[357]
Demaria, S.; Golden, E.B.; Formenti, S.C. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol., 2015, 1(9), 1325-1332.
[358]
Chandra, R.A.; Wilhite, T.J.; Balboni, T.A.; Alexander, B.M.; Spektor, A.; Ott, P.A.; Ng, A.K.; Hodi, F.S.; Schoenfeld, J.D. A systematic evaluation of abscopal responses following radiotherapy in patients with metastatic melanoma treated with ipilimumab. OncoImmunology, 2015, 4(11), e1046028.
[359]
Demaria, M.; Ohtani, N.; Youssef, S.A.; Rodier, F.; Toussaint, W.; Mitchell, J.R.; Laberge, R.M.; Vijg, J.; Van Steeg, H.; Dollé, M.E.; Hoeijmakers, J.H.; de Bruin, A.; Hara, E.; Campisi, J. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell, 2014, 31(6), 722-733.
[360]
Demaria, S.; Ng, B.; Devitt, M.L.; Babb, J.S.; Kawashima, N.; Liebes, L.; Formenti, S.C. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58(3), 862-870.
[361]
MOLE, R.H. Whole body irradiation; radiobiology or medicine? Br. J. Radiol., 1953, 26(305), 234-241.
[362]
Okuma, K.; Yamashita, H.; Niibe, Y.; Hayakawa, K.; Nakagawa, K. Abscopal effect of radiation on lung metastases of hepatocellular carcinoma: A case report. J. Med. Case Reports, 2011, 5, 111.
[363]
Wersäll, P.J.; Blomgren, H.; Pisa, P.; Lax, I.; Kälkner, K.M.; Svedman, C. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol., 2006, 45(4), 493-497.
[364]
Sharabi, A.B.; Lim, M.; DeWeese, T.L.; Drake, C.G. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol., 2015, 16(13), e498-e509.
[365]
Tsakonas, G.; Ekman, S. Oncogene-addicted non-small cell lung cancer and immunotherapy. J. Thorac. Dis., 2018, 10(Suppl. 13), S1547-S1555.
[366]
Mazieres, J.; Drilon, A.E.; Mhanna, L.; Milia, J.; Lusque, A.; Cortot, A.B.; Mezquita, L.; Thai, A.; Couraud, S.; Veillon, R.; Mascaux, C.; Schouten, R.; Neal, J.W.; Ng, T.L.; Frueh, M.; Peled, N.; Gounant, V.; Popat, S.; Zhu, V.W.; Gautschi, O. Efficacy of immune- checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC) patients harboring activating molecular alterations. mmunotarget, 2018, 36(15_suppl), 9010-9010.
[367]
Boni, A.; Cogdill, A.P.; Dang, P.; Udayakumar, D.; Njauw, C.N.; Sloss, C.M.; Ferrone, C.R.; Flaherty, K.T.; Lawrence, D.P.; Fisher, D.E.; Tsao, H.; Wargo, J.A. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res., 2010, 70(13), 5213-5219.
[368]
Kono, M.; Dunn, I.S.; Durda, P.J.; Butera, D.; Rose, L.B.; Haggerty, T.J.; Benson, E.M.; Kurnick, J.T. Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol. Cancer Res., 2006, 4(10), 779-792.
[369]
Frederick, D.T.; Piris, A.; Cogdill, A.P.; Cooper, Z.A.; Lezcano, C.; Ferrone, C.R.; Mitra, D.; Boni, A.; Newton, L.P.; Liu, C.; Peng, W.; Sullivan, R.J.; Lawrence, D.P.; Hodi, F.S.; Overwijk, W.W.; Lizée, G.; Murphy, G.F.; Hwu, P.; Flaherty, K.T.; Fisher, D.E.; Wargo, J.A. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res., 2013, 19(5), 1225-1231.
[370]
Liu, C.; Peng, W.; Xu, C.; Lou, Y.; Zhang, M.; Wargo, J.A.; Chen, J.Q.; Li, H.S.; Watowich, S.S.; Yang, Y.; Tompers Frederick, D.; Cooper, Z.A.; Mbofung, R.M.; Whittington, M.; Flaherty, K.T.; Woodman, S.E.; Davies, M.A.; Radvanyi, L.G.; Overwijk, W.W.; Lizée, G.; Hwu, P. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin. Cancer Res., 2013, 19(2), 393-403.
[371]
Callahan, M.K.; Masters, G.; Pratilas, C.A.; Ariyan, C.; Katz, J.; Kitano, S.; Russell, V.; Gordon, R.A.; Vyas, S.; Yuan, J.; Gupta, A.; Wigginton, J.M.; Rosen, N.; Merghoub, T.; Jure-Kunkel, M.; Wolchok, J.D. Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor. Cancer Immunol. Res., 2014, 2(1), 70-79.
[372]
Jiang, X.; Zhou, J.; Giobbie-Hurder, A.; Wargo, J.; Hodi, F.S. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin. Cancer Res., 2013, 19(3), 598-609.
[373]
Atefi, M.; Avramis, E.; Lassen, A.; Wong, D.J.; Robert, L.; Foulad, D.; Cerniglia, M.; Titz, B.; Chodon, T.; Graeber, T.G.; Comin-Anduix, B.; Ribas, A. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin. Cancer Res., 2014, 20(13), 3446-3457.
[374]
Puzanov, I.; Callahan, M.K.; Linette, G.P.; Patel, S.P.; Luke, J.J.; Sosman, J.A.; Wolchok, J.D.; Hamid, O.; Minor, D.R.; Orford, K.W.; Hug, B.A.; Ma, B.; Matthys, G.M.; Hoos, A. Phase 1 study of the BRAF inhibitor dabrafenib (D) with or without the MEK inhibitor trametinib (T) in combination with ipilimumab (Ipi) for V600E/K mutation–positive unresectable or metastatic melanoma (MM). 2014, 32(15-suppl), 2511-2511.
[375]
Kerbel, R.S.; Kamen, B.A. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer, 2004, 4(6), 423-436.
[376]
Maiti, R. Metronomic chemotherapy. J. Pharmacol. Pharmacother., 2014, 5(3), 186-192.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy