Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Melamine Detection in Food matrices employing Chicken Antibody (IgY): A Comparison between Colorimetric and Chemiluminescent Methods

Author(s): Umesh Sushma, Alok K. Srivastava and Manonmani H. Krishnan*

Volume 15, Issue 6, 2019

Page: [668 - 677] Pages: 10

DOI: 10.2174/1573411015666181205120323

Price: $65

Abstract

Background: Melamine, contains 67% nitrogen by mass, and is adulterated in foods to uplift false protein. There is an urgent requirement to develop fast screening techniques for monitoring melamine in foods.

Objectives: To develop rapid, high throughput detection techniques for melamine in the food matrix.

Methods: IgY antibodies were developed against melamine in the hen, isolated and used for detection of melamine. The detection by colorimetric and chemiluminescent methods was compared.

Results: The detection range for melamine was 1 ng-25 µg by the colorimetric method and 10 fg/mL-25 ng/mL by the chemiluminescent method. There was a very low matrix effect, where the recovery was 86 to 106 % by colorimetric method and 71 to 98 % by the chemiluminescent method.

Conclusion: Both colorimetric and chemiluminescent methods could be employed for the fast and consistent melamine detection in the food matrix.

Keywords: Chemiluminescence, colorimetric, ELISA, enzyme-linked immunosorbent assay (ELISA), IgY antibodies, melamine.

Graphical Abstract
[1]
Brown, C.A.; Jeong, K-S.; Poppenga, R.H.; Puschner, B.; Miller, D.M.; Ellis, A.E.; Kang, K-I.; Sum, S.; Cistola, A.M.; Brown, S.A. Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007. J. Vet. Diagnostic. Investig., 2007, 19(5), 525-531.
[2]
Zhou, Q.; Liu, N.; Qie, Z.; Wang, Y.; Ning, B.; Gao, Z. Development of gold nanoparticle-based rapid detection kit for melamine in milk products. J. Agric. Food Chem., 2011, 59(22), 12006-12011.
[3]
Gao, L.; Jönsson, J.Å. Determination of melamine in fresh milk with hollow fiber liquid phase microextraction based on ion-pair mechanism combined with high performance liquid chromatography. Anal. Lett., 2012, 45(16), 2310-2323.
[4]
Ren, S-T.; Xu, C-F.; Du, Y-X.; Gao, X-L.; Sun, Y.; Jiang, Y-N. The natural outcome of melamine-induced bladder stones with bladder epithelial hyperplasia after the withdrawal of melamine in mice. Food Chem. Toxicol., 2012, 50(7), 2318-2324.
[5]
Liu, C-C.; Wu, C-F.; Shiea, J.; Cho, Y-T.; Hsieh, T-J.; Chou, Y-H.; Chen, B-H.; Huang, S-P.; Wu, W-J.; Shen, J-T. Detection of melamine in a human renal uric acid stone by matrix-assisted laser desorption/ionization time-of-flight Mass Spectrometry (MALDI-TOF MS). Clin. Chim. Acta, 2012, 413(19-20), 1689-1695.
[6]
Rovina, K.; Siddiquee, S. A review of recent advances in melamine detection techniques. J. Food Compos. Anal., 2015, 43, 25-38.
[7]
World Health Organization (WHO). Toxicological and Health Aspects of Melamine and Cyanuric Acid Report of a WHO Expert Meeting In Collaboration with FAO Supported by Health Canada., 2009, No. December 2008, pp. 1-74
[8]
Lou, T.; Wang, Y.; Li, J.; Peng, H.; Xiong, H.; Chen, L. Rapid Detection of melamine with 4-Mercaptopyridine-Modified gold nanoparticles by surface-enhanced raman scattering. Anal. Bioanal. Chem., 2011, 401(1), 333-338.
[9]
Kim, A.; Barcelo, S.J.; Williams, R.S.; Li, Z. Melamine Sensing in Milk Products by Using Surface Enhanced Raman Scattering. Anal. Chem., 2012, 84(21), 9303-9309.
[10]
Robinson, A.M.; Harroun, S.G.; Bergman, J.; Brosseau, C.L. Portable electrochemical surface-enhanced raman spectroscopy system for routine spectroelectrochemical analysis. Anal. Chem., 2012, 84(3), 1760-1764.
[11]
Xu, X.M.; Ren, Y.P.; Zhu, Y.; Cai, Z.X.; Han, J.L.; Huang, B.F.; Zhu, Y. Direct determination of melamine in dairy products by Gas Chromatography/Mass Spectrometry with coupled column separation. Anal. Chim. Acta, 2009, 650(1), 39-43.
[12]
Li, J.; Qi, H-Y.; Shi, Y-P. Determination of melamine residues in milk products by zirconia hollow fiber sorptive microextraction and gas chromatography-mass spectrometry. J. Chromatogr. A, 2009, 1216(29), 5467-5471.
[13]
Ehling, S.; Tefera, S.; Ho, I.P. High-Performance Liquid Chromatographic method for the simultaneous detection of the adulteration of cereal flours with melamine and related triazine by-products ammeline, ammelide, and cyanuric acid. Food Addit. Contam., 2007, 24(12), 1319-1325.
[14]
Squadrone, S.; Ferro, G.L.; Marchis, D.; Mauro, C.; Palmegiano, P.; Amato, G.; Poma, Genin E.; Abete, M.C. Determination of melamine in feed: Validation of a gas chromatography-mass spectrometry method according to 2004/882/CE regulation. Food Control, 2010, 21(5), 714-718.
[15]
Liu, J.; Zhong, Y.; Liu, J.; Zhang, H.; Xi, J.; Wang, J. An enzyme linked immunosorbent assay for the determination of cyromazine and melamine residues in animal muscle tissues. Food Control, 2010, 21(11), 1482-1487.
[16]
Lei, H.; Shen, Y.; Song, L.; Yang, J.; Chevallier, O.P.; Haughey, S.A.; Wang, H.; Sun, Y.; Elliott, C.T. Hapten synthesis and antibody production for the development of a melamine immunoassay. Anal. Chim. Acta, 2010, 665(1), 84-90.
[17]
Wang, Q.; Haughey, S.A.; Sun, Y-M.; Eremin, S.A.; Li, Z-F.; Liu, H.; Xu, Z-L.; Shen, Y-D.; Lei, H-T. Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder. Anal. Bioanal. Chem., 2011, 399(6), 2275-2284.
[18]
Kim, B.; Perkins, L.B.; Bushway, R.J.; Nesbit, S.; Fan, T.; Sheridan, R.; Greene, V. Determination of melamine in pet food by enzyme immunoassay, high-performance liquid chromatography with diode array detection, and ultra-performance liquid chromatography with tandem mass spectrometry. J. AOAC Int., 2008, 91(2), 408-413.
[19]
Garber, E. Detection of melamine using commercial enzyme-linked immunosorbent assay technology. J. Food Prot., 2008, 71(3), 590-594.
[20]
Lee, J.K.; Park, S.H.; Lee, E.Y.; Kim, Y.J.; Kyung, K.S. Development of an enzyme-linked immunosorbent assay for the detection of the fungicide fenarimol. J. Agric. Food Chem., 2004, 52(24), 7206-7213.
[21]
Garber, E.A.; Brewer, V.A. Enzyme-Linked immunosorbent assay detection of melamine in infant formula and wheat food products. J. Food Prot., 2010, 73(4), 701-707.
[22]
Choi, J.; Kim, Y.; Hoon, J. Rapid quantification of melamine in milk using competitive 1,1′-oxalyldiimidazole chemiluminescent Enzyme Immunoassay. Analyst, 2010, 135(9), 2445-2450.
[23]
Yin, W.; Liu, J.; Zhang, T.; Li, W.; Liu, W.; Meng, M.; He, F.; Wan, Y.; Feng, C.; Wang, S. Preparation of monoclonal antibody for melamine and development of an indirect competitive elisa for melamine detection in raw milk, milk powder, and animal feeds. J. Agric. Food Chem., 2010, 58(14), 8152-8157.
[24]
Lutter, P.; Savoy-Perroud, M-C.; Campos-Gimenez, E.; Meyer, L.; Goldmann, T.; Bertholet, M-C.; Mottier, P.; Desmarchelier, A.; Monard, F.; Perrin, C. Screening and confirmatory methods for the determination of melamine in cow’s milk and milk-based powdered infant formula: Validation and proficiency-tests of ELISA, HPLC UV, GC-MS and LCMS/MS. Food Control, 2011, 22(6), 903-913.
[25]
Wang, Z.; Ma, X.; Zhang, L.; Yang, W.; Gong, L.; He, P.; Li, Z. Screening and determination of melamine residues in tissue and body fluid samples. Anal. Chim. Acta, 2010, 662(1), 69-75.
[26]
Zhu, K.; Li, J.; Wang, Z.; Jiang, H.; Beier, R.C.; Xu, F.; Shen, J.; Ding, S. Simultaneous detection of multiple chemical residues in milk using broad-specificity antibodies in a hybrid immunosorbent assay. Biosens. Bioelectron., 2011, 26(5), 2716-2719.
[27]
Lei, H.; Su, R.; Haughey, S.A.; Wang, Q.; Xu, Z.; Yang, J.; Shen, Y.; Wang, H.; Jiang, Y.; Sun, Y. Development of a specifically enhanced enzyme-linked immunosorbent assay for the detection of melamine in milk. Molecules, 2011, 16(7), 5591-5603.
[28]
Li, X.; Luo, P.; Tang, S.; Beier, R.C.; Wu, X.; Yang, L.; Li, Y.; Xiao, X. Development of an immunochromatographic strip test for rapid detection of melamine in raw milk, milk products and animal feed. J. Agric. Food Chem., 2011, 59(11), 6064-6070.
[29]
Tini, M.; Jewell, U.R.; Camenisch, G.; Chilov, D.; Gassmann, M. Generation and application of chicken egg-yolk antibodies. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2002, 131(3), 569-574.
[30]
Michael, A.; Meenatchisundaram, S.; Parameswari, G.; Subbraj, T.; Selvakumaran, R.; Ramalingam, S. Chicken Egg Yolk Antibodies (IgY) as an alternative to mammalian antibodies. Indian J. Sci. Technol., 2010, 3(4), 468-474.
[31]
How much IgY is present in chicken eggs? | Aves Labs, Inc. http://www.aveslab.com/resources/faq/igy/how-much-igy-is-present-in-chicken-eggs/ (Accessed Nov 21, 2018)
[32]
Pauly, D.; Chacana, P.A.; Calzado, E.G.; Brembs, B.; Schade, R. IgY Technology: Extraction of chicken antibodies from egg yolk by Polyethylene Glycol (PEG) precipitation. J. Vis. Exp., 2011, 51, 3084.
[33]
Munhoz, L.S.; Vargas, G.D.; Fischer, G.; Lima, M de.; Esteves, P.A.; Hübner, S. de O. Avian IgY Antibodies: Characteristics and applications in immunodiagnostic. Ciência. Rural, 2014, 44(1), 153-160.
[34]
Selvi, A.A.; Manonmani, H.K. Detection of isoprothiolane in food, soil, and water samples by immunosorbent assay using avian antibodies. J. Immunoass Immunochem., 2013, 34(2), 149-165.
[35]
Habeeb, A.F. Determination of Free Amino Groups in Proteins by Trinitrobenzenesulfonic Acid. Anal. Biochem., 1966, 14(3), 328-336.
[36]
Rashmi, S.S.; Manonmani, H.K. Enzyme-Linked immunoassay for the detection of endosulfan in food samples using avian antibodies. Int. J. New Technol. Sci. Eng., 2016, 3(2), 2349-2780.
[37]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[38]
Kim, B. Analysis of Melamine and Cyanuric Acid by Liquid Chromatography with Diode Array Detection and Tandem Mass Spectrometry PhD Thesis, The University of Maine: Orono., 2009.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy