Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Isolation of a New Sesquiterpene Lactone From Vernonia Zeylanica (L) Less and its Anti-Proliferative Effects in Breast Cancer Cell Lines

Author(s): Anuka S. Mendis*, Ira Thabrew, Meran K. Ediriweera, Sameera R. Samarakoon, Kamani H. Tennekoon, Achyut Adhikari* and Egodage D. de Silva

Volume 19, Issue 3, 2019

Page: [410 - 424] Pages: 15

DOI: 10.2174/1871520619666181128163359

Price: $65

Abstract

Background/Objective: Vernonia zeylanica (L) less is an endemic plant to Sri Lanka. The present study was designed to isolate potential cytotoxic compound/s from chloroform and ethyl acetate extracts of V. zeylanica by bio-activity guided isolation and to evaluate its anti-proliferative effects in three breast cancer phenotypes (MCF -7, MDA-MB-231, SKBR-3).

Methods: Combined chloroform and ethyl acetate extracts were subjected to chromatographic separations to isolate a compound (1) and the structure of the isolated compound was elucidated using 1H, 13C and mass spectroscopic techniques. Cytotoxic effects of the compound were evaluated by the sulforhodamine B (SRB) and the MTT (3- (4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. Effects of the compound on apoptosis were evaluated by fluorescent microscopy, caspase 3/7 activation, DNA fragmentation and real time PCR. Effects of the compound on the expression of heat shock protein complex were also evaluated by real time PCR and immunofluorescence.

Results: Isolated compound was identified as a new sesquiterpene lactone (vernolactone). The compound mediated significant cytotoxic effects in SKBR-3 and MDA-MB-231 breast cancer cells, with little effect in MCF-7 and normal mammary epithelial MCF-10A cells. Morphological changes, DNA fragmentation, increased caspase 3/7 activities and up-regulation of p53, Bax and down regulation of Survivin confirmed the proapoptotic effects of the compound. Significant inhibition of HSP complex related genes were also observed in SKBR-3 and MDA-MB-231 breast cancer cells.

Conclusion: Overall results indicate that vernolactone can mediate its cytotoxic effects via apoptosis and modulating the HSP complex.

Keywords: Vernonia zeylanica (L) less, vernolactone, breast cancer, phenotype cells, heat shock proteins, apoptosis.

Graphical Abstract
[1]
DeSantis, C.E.; Fedewa, S.A.; Goding, S.A.; Kramer, J.L.; Smith, R.A.; Jemal, A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. Canc. J. Clinic., 2016, 66, 31-42.
[2]
Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; Fernandez, A.G. Assessment of the evolution of cancer treatment therapies. Cancers, 2011, 3(3), 3279-3330.
[3]
Scharl, A.; Kühn, T.; Papathemelis, T.; Salterberg, A. The right treatment for the right patient - personalised treatment of breast cancer. Geburtshilfe Frauenheilkunde., 2015, 75(7), 683-691.
[4]
Onitilo, A.A.; Engel, J.M.; Greenlee, R.T.; Mukesh, B.N. Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clinic. Med. Res., 2009, 7(1-2), 4-13.
[5]
Mouttet, D.; Laé, M.; Caly, M.; Gentien, D.; Carpentier, S.; Peyro-Saint-Paul, H.; Vincent-Salomon, A.; Rouzier, R.; Sigal-Zafrani, B.; Sastre-Garau, X.; Reyal, F. Estrogen-receptor, progesterone-receptor and HER2 status determination in invasive breast cancer. Concordance between immuno-histochemistry and MapQuant™ microarray based assay. PLoS One, 2016, 11(2), e0146474.
[6]
Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clinic. Oncol., 2014, 5(3), 412-424.
[7]
Cappelletti, V.; Iorio, E.; Miodini, P.; Silvestri, M.; Dugo, M.; Daidone, M.G. Metabolic footprints and molecular subtypes in breast cancer. Dis. Markers, 2017, 20177687851
[8]
Millimouno, F.M.; Dong, J.; Yang, L.; Li, J.; Li, X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Canc. Prev. Res, 2014, 7(11), 1081-1107.
[9]
Mancuso, D.O.V.; Forni-Martins, E.R.; Semir, J. Cytotaxonomic studies in six species of Vernonia (Asteraceae:Vernonieae). Caryologia, 2007, 60(1-2), 37-47.
[10]
Toyang, N.J.; Verpoorte, R. A review of the medicinal potentials of Plants of the genus Vermonia (Asteraceae). J. Ethnopharmacol., 2013, 146, 681-723.
[11]
Sobrinho, A.C.N.; Souza, E.B.; Fontenelle, R.O.S. A review on antimicrobial potential of species of the genus Vernonia (Asteraceae). J. Med. Plants Res., 2015, 9, 838-850.
[12]
Toigo, L.; Oliveira, R.F.; Oliveira, F.; Marques, M.O.M. Morphological, anatomical, antimicrobial activity and essential oil fraction studies from Vernonia scorpioides (Lam.). Pers. Pers. Rev. Bras. Farm, 2004, 85, 49-55.
[13]
Jayaweera, D.M. Medicinal Plants (Indigenous and Exotic) used in Ceylon, Part 2. Colombo: A publication of the National Science Council of Sri Lanka, 1980.
[14]
Ratnasooriya, W.D.; Deraniyagala, S.A.; Peiris, S.K.J.S. Antinociceptive potential of the Sri Lankan endemic plant Vernonia zeylanica. Pharm. Biol., 2007, 45, 7.
[15]
Jeyaseelan, E.C.; Jenothiny, S.; Pathmanathan, M.; Jeyadevan, J. Antibacterial activity of sequentially extracted organic solvent extracts of fruits, flowers and leaves of Lawsonia inermis L. from Jaffna. Asian Pac. J. Trop. Biomed., 2012, 2(10)798802
[16]
Samarakoon, S.R.; Thabrew, I.; Galhena, P.B.; De Silva, D.; Tennekoon, K.H. A comparison of the cytotoxic potential of standardized aqueous and ethanolic extracts of a polyherbal mixture comprised of Nigella sativa (seeds), Hemidesmusindicus (roots) and Smilax glabra (rhizome). Pharmacog. Res., 2010, 2, 335-342.
[17]
Samarakoon, S.R.; Thabrew, I.; Galhena, P.B.; Tennekoon, K.H. Effect of standardized decoction of Nigella sativa seed, Hemidesmus indicus root and Smilax glabra rhizome on the expression of p53 and p21 genes in Human Hepatoma Cells (HepG2) and mouse liver with chemically-induced hepatocarcinogenesis. Trop. J. Pharm. Res., 2012, 11, 51-61.
[18]
Samarakoon, S.R.; Shanmuganathan, C.; Ediriweera, M.K.; Piyathilaka, P.; Tennekoon, K.H.; Thabrew, I.; Galhena, P.; De Silva, E.D. Anti-hepatocarcinogenic and anti-oxidant effects of mangrove plant Scyphiphora hydrophyllacea. Phcog. Mag., 2017, 13(1), 76-83.
[19]
Wang, S.S.; Kamphuis, W.; Huitinga, I.; Zhou, J.N.; Swaab, D.F. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: The presence of multiple receptor imbalances. Mol. Psych., 2008, 13, 786-799.
[20]
Okumura, N.; Yoshida, H.; Nishimura, Y.; Kitagishi, Y.; Matsuda, S. Terpinolene, a component of herbal sage, down-regulates AKT1 expression in K562 cells. Oncol. Lett., 2012, 3(2), 321-324.
[21]
Fandino, Q.M. Prognostic impact of isolated residual tumor cells in peripheral blood in high risk breast cancer., 2009.http://biblioteca. ucm.es/tesis/med/ucm-t28663.pdf (Accessed Feb 2017).
[22]
Gray, Jr, P.J.; Stevenson, M.A.; Calderwood, S.K. Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Canc Res., 2007, 67(24), 11942-11950.
[23]
Rawat, P. HSF1 positively regulates both HSP40 promoter and HIV-1 LTR driven gene expression during HIV-1 infection. 2010, accessed 2015. http://shodhganga.inflibnet.ac.in/bitstream/10603/ 89530/10/10_chapter3.pdf
[24]
Mendis, A.S.; Thabrew, I.; Samarakoon, S.R.; Tennekoon, K.H. Modulation of expression of heat shock proteins and apoptosis by Flueggea leucopyrus (Willd) decoction in three breast cancer phenotypes. BMC Complement. Altern. Med., 2015, 9(15), 404.
[25]
Rahman, A.H.M.M.; Alam, M.S.; Hossain, M.B.; Nesa, M.N.; Islam, A.K.M.R.; Matiur, M. Study of species diversity on the family Asteraceae (Compositae) of the Rajshahi Division. Res. J. Agric. Biol. Sci., 2008, 4(6), 794-797.
[26]
Rahman, A.H.M.M. Systematic studies on Asteraceae in the northern region of Bangladesh. Am. J. Life Sci., 2013, 1(4), 155-164.
[27]
Kiplimo, J.J. A review on the biological activity and the triterpenoids from the Genus Vernonia (Asteraceae Family). Int. Res. J. Pure Appl. Chem., 2016, 11(3), 1-14.
[28]
Albuquerque, M.R.J.R.; Lemos, T.L.G.; Pessoa, O.D.L.; Nunes, E.P.; Nascimento, R.F.; Silveira, E.R. Chemical composition of the essential oil from Vernonia scorpioides Asteraceae. Flavour Frag J., 2007, 22, 249-250.
[29]
Toigo, L.; Oliveira, R.F.; Oliveira, F.; Marques, M.O.M. Morphological, anatomical, antimicrobial activity and essential oil fraction studies from Vernonia scorpioides (Lam.). Pers. Pers. Rev. Bras. Farm, 2004, 85, 49-55.
[30]
Sobrinho, A.C.N.; Souza, E.B.; Fontenelle, R.O.S. A review on antimicrobial potential of species of the genus Vernonia (Asteraceae). J. Med. Plants Res., 2015, 9(31), 838-850.
[31]
Kos, O.; Castro, V.; Murillo, R.; Poveta, L.; Merfort, I. Ent-kaurene glycosides and sesquiterpene lactones of the hirsutinolide type from Vernonia triflosculosa. Phytochemistry, 2006, 67, 62-69.
[32]
Liang, Q.L.; Min, Z.D. Studies on the constituents from the herb of Vernonia patula. Zhongguo Zhong Yao Za Zhi, 2003, 28, 235-237.
[33]
Tchinda, A.T.; Tane, P.; Ayafor, J.F.; Connolly, J.D. Stigmastane derivatives and isovaleryl sucrose esters from Vernonia guineensis (Asteraceae). Phytochemistry, 2003, 63, 841-846.
[34]
Carvalho, L.H.; Brandao, M.G.; Santos-Filho, D.; Lopes, J.L.; Krettli, A.U. Antimalarial activity of crude extracts from Brazilian plants studied in vivo in Plasmodium berghei infected mice and in vitro against Plasmodium falciparum in culture. Braz. J. Med. Biol. Res., 1991, 24, 1113-1123.
[35]
Buskuhl, H.; Oliveira, F.L.; Blind, L.Z.; Freitas, R.A.; Barison, A.; Campos, F.R.; Corilo, Y.E.; Eberlin, M.N.; Caramori, G.F.; Biavatti, M.W. Sesquiterpene lactones from Vernonia scorpioides and their in vitro cytotoxicity. Phytochemistry, 2010, 7115391544
[36]
Martucci, M.E.P.; Loeuille, B.; Pirani, J.R.; Gobbo-Neto, L. Comprehensive untargeted metabolomics of Lychnnophorinae subtribe (Asteraceae: Vernonieae) in a phylogenetic context. PLoS One, 2018, 13(1)e0190104
[37]
Adebayo, O.L.; James, A.; Kasim, S.B.; Jagri, O.P. Leaf extracts of Vernonia amygdalina Del. from northern Ghana contain bioactive agents that inhibit the growth of some betalactamase producing bacteria in vitro. Brit. J. Pharm. Res., 2014, 4, 192-202.
[38]
Clement, E.; Erharuyi, O.; Vincent, I.; Joy, A.; Christopher, A.; Udu-Cosi, A.A.; Theophilus, O.; James, O.; Li, I.; Falodun, A. Significance of Bitter Leaf (Vernonia Amagdalina) in tropical diseases and beyond: A review. Malar. Chemother. Cont., 2014, 3, 120.
[39]
Chaturvedi, D. Sesquiterpene lactones: Structural diversity and their biological activities. In: Opportunity; Challenge and Scope of Natural Products in Medicinal Chemistry, 2011; pp. 313-334.
[40]
Amarasekera, A.; Weerasaen, J.; Dhanayeka, S.; Cojacaru, M. Constituents of Vernonia zeylanica. Fitoterapia, 1994, 65(5), 477.
[41]
Jakupovic, J.; Zdero, C.; Boeker, R.; Warning, U.; Bohlmann, F.; Jones, S.B. Vernocistifolide und andere Sesquiterpenlactone aus Vernonia und verwandten Arten. Eur. J. Org. Chem., 1987, 2, 111-123.
[42]
Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: Benefits to plants and people. Int. J. Mol. Sci., 2013, 14(6), 12780-12805.
[43]
Bosco, A.; Golsteyn, R.M. Emerging anti-mitotic activities and other bioactivities of sesquiterpene compounds upon human cells. Molecules, 2017, 22, 451-459.
[44]
Toyang, N.J.; Wabo, H.K.; Ateh, E.N. Cytotoxic sesquiterpene lactones from the leaves of Vernonia guineensis Benth. (Asteraceae). J. Ethnopharmacol., 2013, 146(2), 552-556.
[45]
Sundquist, T.; Moravec, R.; Niles, A.; O’Brien, M.; Riss, T. Timing your apoptosis assays. Cell Notes, 2006, 16, 18-21.
[46]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 23150845
[47]
Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.; Zhou, T.; Liu, B. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 2012, 45, 487-498.
[48]
Gurushankar, K.; Gohulkumar, M.; Rajendra, P.N.; Krishnakumar, N. Synthesis, characterization and in vitro anti-cancer evaluation of hesperetin-loaded nanoparticles in human oral carcinoma (KB) cells. Adv. Nat. Sci. Nanosci. Nanotechnol, 2014, 5015006
[49]
Rahbar, S.Y.; Saeidi, N.; Zununi, V.S.; Barzegari, A.; Barar, J. An update to DNA ladder assay for apoptosis detection. BioImpacts, 2015, 5(1), 25-28.
[50]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[51]
Looi, C.Y.; Arya, A.; Cheah, F.K.; Muharram, B.; Leong, K.H.; Mohamad, K. Induction of apoptosis in human breast cancer cells via caspase pathway by vernodalin isolated from centratherum. J. Pone, 2014, e56643.
[52]
Shi, Y. Caspase activation, inhibition, and reactivation: A mechanistic view. Protein Sci., 2004, 13(8), 1979-1987.
[53]
Liang, Y.; Yan, C.; Schor, N.F. Apoptosis in the absence of caspase 3. Oncogene, 2001, 20, 6570-6578.
[54]
Oren, M. Regulation of the p53 tumor suppressor protein. J. Biol. Chem., 1999, 274, 36031-36034.
[55]
Zilfou, J.T.; Lowe, S.W. Tumor suppressive functions of p53. Cold Spring Harbor. Perspect. Biol., 2009, 1(5)001883
[56]
Chipuk, J.E.; Bouchier-Hayes, L.; Kuwana, T.; Newmeyer, D.D.; Green, D.R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science, 2005, 309, 1732-1735.
[57]
Zhang, Q.; Zhai, S.; Li, L.; Li, X.; Zhou, H.; Liu, A.; Su, G.; Mu, Q.; Du, Y.; Yan, B. Anti-tumor selectivity of a novel Tubulin and HSP90 dual-targeting inhibitor in nonsmall cell lung cancer models. Biochem. Pharmacol., 2013, 86, 351-360.
[58]
Altieri, D.C. Survivin, cancer networks and pathway-directed drug discovery. Nat. Rev. Canc, 2008, 8, 61-70.
[59]
Shibbiru, T. Heat shock proteins: Their role in tumor development and their therapeutic applications against cancer. J. Med. Physiol. Biophys., 2016, 25
[60]
Ikwegbue, P.C.; Masamba, P.; Oyinloye, B.E. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals (Basel), 2017, 11(1)E2
[61]
Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. cell Biol., 2013, 14(10), 630-642.
[62]
Ciocca, D.R.; Calderwood, S.K. Heat shock proteins in cancer: Diagnostics, prognostics, predictive and treatment implications. Cell Stress Chaperones, 2005, 10, 86-103.
[63]
Kim, L.S.; Kim, J.H. Heat shock protein as molecular targets for breast cancer therapeutics. J. Breast Canc, 2011, 14(3), 167-174.
[64]
Didenko, T.; Afonso, M.S.; Duarte, G.; Karagöz, E.; Rüdiger, S.G.D. Hsp90 structure and function studied by NMR spectroscopy. Biochim. Biophys. Acta (BBA) -. Mol. Cell Res., 2012, 1823(3), 636-647.
[65]
Dollins, E.D.; Warren, J.; Immormino, R.M.; Gewirth, D.T. Structures of GRP94nucleotide complexes reveal mechanistic differences between the Hsp90 chaperones. Mol. Cell, 2007, 28(1), 41-56.
[66]
Tsutsumi, S.; Mollapour, M.; Prodromou, C.; Lee, C.T.; Panaretou, B.; Yoshida, S.; Mayer, M.P.; Neckersa, L.M. Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 2937-2942.
[67]
Zagouri, F.; Bournakis, E.; Koutsoukos, K.; Papadimitriou, C.A. Heat Shock Protein 90 (Hsp90) expression and breast cancer pharmaceuticals. Basel, 2012, 5(9), 1008-1020.
[68]
Stephanou, A.; Latchman, D.S. Transcriptional modulation of heat-shock protein gene expression. Biochem. Res. Int., 2011, 2011238601
[69]
Emlet, D.R.; Schwartz, R.; Brown, K.A.; Pollice, A.A.; Smith, C.A.; Shackney, S.E. HER2 expression as a potential marker for response to therapy targeted to the EGFR. Brit. J. Canc, 2006, 94(8), 1144-1153.
[70]
Schulz, R.; Streller, F.; Scheel, A.H.; Rüschoff, J.; Reinert, M.C.; Dobbelstein, M.; Marchenko, N.D.; Moll, U.M. HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF 501 in HER2-overexpressing breast cancer. Cell Death Dis., 2014, 5, 502.
[71]
Qing, C.Q.; Chang, J.T.; Geradts, J.; Neckers, L.M.; Haystead, T.; Spector, N.L.; Lyerly, H.K. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Canc Res., 2012, 14, 506.
[72]
Lanneau, D.; de-Thonel, A.; Maurel, S.; Didelot, C.; Garrido, C. Apoptosis versus cell differentiation: Role of heat shock proteins HSP90, HSP70 and HSP27. Prion, 2007, 1(1), 53-60.
[73]
Fujiwara, H.; Yamakuni, T.; Ueno, M.; Ishizuka, M.; Shinkawa, T.; Isobe, T.; Ohizumi, Y. IC101 induces apoptosis by Akt dephosphorylation via an inhibition of heat shock protein 90-ATP binding activity accompanied by preventing the interaction with Akt in L1210 cells. J. Pharmacol. Exp. Thera., 2004, 310(3), 1288-1295.
[74]
Sato, S.; Fujita, N.; Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 10832-10837.
[75]
Castello, J.; Ragnauth, A.; Friedman, E.; Rebholz, H. CK2-An emerging target for neurological and psychiatric disorders. Pharmaceuticals, 2017, 10, 7.
[76]
Rusak, G.; Gutzeit, H.O.; Ludwig-Muller, J. Effects of structurally related flavonoids on hsp gene expression in human promyeloid leukaemia cells. Food Technol. Biotechnol., 2002, 40, 267-439.
[77]
Powers, M.V.; Workman, P. Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr. Relat. Canc, 2006, 13, S125-S135.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy