Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Electrochemistry and Electrocatalysis of Hemoglobin Based on Graphene Quantum Dots Modified Electrode

Author(s): Xiaoyan Li, Hui Xie, Guiling Luo, Yanyan Niu, Xiaobao Li, Yaru Xi, Yi Xiong, Yong Chen and Wei Sun*

Volume 16, Issue 3, 2020

Page: [308 - 315] Pages: 8

DOI: 10.2174/1573411015666181128144712

Price: $65

Abstract

Background: Graphene quantum dots (GQD) is a new member of carbon nanomaterial that has attracted increasing attention owing to its better chemical inertness, low cytotoxicity, large specific surface area, cheap cost, suitable conductivity and excellent biocompatibility.

Methods: Electrochemical behaviors of this modified electrode were studied by cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical investigations of Nafion/Hb/GQD/ CILE were carried out with electrochemical parameters calculated.

Results: In the phosphate buffer solution with a pH value of 5.0, good linear relationships between the catalytic reduction current and the concentration of substrate were got for TCA (6.0~100.0 mmol·L-1), NaNO2 (2.0~12.0 mmol·L-1) and H2O2 (6.0~30.0 mmol·L-1). The proposed method was applied to NaNO2 concentration detection in soak water from picked vegetables with satisfactory results.

Conclusion: This Nafion/Hb/GQD/CILE had a good bioelectrocatalytic activity to different substrates such as trichloroacetic acid, NaNO2 and H2O2 reduction with the advantages including wide detection range, low detection limit and good stability. Therefore, the application of GQD in electrochemical sensor was extended in this paper.

Keywords: Direct electrochemistry, electrocatalysis, graphene quantum dots, hemoglobin, modified electrode, carbon nanomaterial.

Graphical Abstract
[1]
Scheller, F.W.; Bistolas, N.; Liu, S.; Jänchen, M.; Katterle, M.; Wollenberger, U. Thirty years of haemoglobin electrochemistry. Adv. Colloid Interface Sci., 2005, 116(1-3), 111-120.
[http://dx.doi.org/10.1016/j.cis.2005.05.006] [PMID: 16099417]
[2]
Léger, C.; Bertrand, P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev., 2008, 108(7), 2379-2438.
[http://dx.doi.org/10.1021/cr0680742] [PMID: 18620368]
[3]
Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater., 2011, 23(6), 776-780.
[http://dx.doi.org/10.1002/adma.201003819] [PMID: 21287641]
[4]
Pan, D.; Zhang, J.; Li, Z.; Wu, M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater., 2010, 22(6), 734-738.
[http://dx.doi.org/10.1002/adma.200902825] [PMID: 20217780]
[5]
Sinduja, B.; John, S.A. Ultrasensitive optical sensor for hydrogen peroxide using silver nanoparticles synthesized at room temperature by GQD. Sens. Actuators B Chem., 2017, 247, 648-654.
[http://dx.doi.org/10.1016/j.snb.2017.03.056]
[6]
Fan, Z.T.; Li, Y.C.; Li, X.H.; Fan, L.Z.; Zhou, S.X.; Fang, D.C.; Yang, S.H. Surrounding media sensitive photoluminescence of boron doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon, 2014, 70, 149-156.
[http://dx.doi.org/10.1016/j.carbon.2013.12.085]
[7]
Xu, H.; Zhou, S.; Xiao, L.; Wang, H.; Li, S.; Yuan, Q. Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 291-297.
[http://dx.doi.org/10.1039/C4TC01991A]
[8]
Martinez, S.B.; Valcarcel, M. Graphene quantum dots as sensor for phenols in olive oil. Sens. Actuators B Chem., 2014, 197, 350-357.
[http://dx.doi.org/10.1016/j.snb.2014.03.008]
[9]
Wang, Z.; Zeng, H.; Sun, L. Graphene quantum dots: Versatile photoluminescence for energy, biomedical and environmental applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 1157-1165.
[http://dx.doi.org/10.1039/C4TC02536A]
[10]
Hamilton, I.P.; Li, B.; Yan, X.; Li, L.S. Alignment of colloidal graphene quantum dots on polar surfaces. Nano Lett., 2011, 11(4), 1524-1529.
[http://dx.doi.org/10.1021/nl200298c] [PMID: 21366298]
[11]
Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K.S.; Luk, C.M.; Zeng, S.; Hao, J.; Lau, S.P. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano, 2012, 6(6), 5102-5110.
[http://dx.doi.org/10.1021/nn300760g] [PMID: 22559247]
[12]
Wang, X.; Sun, X.; Lao, J.; He, H.; Cheng, T.; Wang, M.; Wang, S.; Huang, F. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf. B Biointerfaces, 2014, 122, 638-644.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.043] [PMID: 25129696]
[13]
Shao, S.F.; Wang, W.; Zhou, K.; Jiang, F.; Wu, H.Y.; Koehn, R. GQD-TiO2 Heterojuction based thin films for volatile organic compounds sensor with excellent performance at room temperature. Mater. Lett., 2017, 186, 193-197.
[http://dx.doi.org/10.1016/j.matlet.2016.10.012]
[14]
Yang, Y.Y.; Zhang, J.L.; Zhang, F.W.; Guo, S.W. Preparation of AuNPs/GQD/SiO2 composite and its catalytic performance in oxidation of veratryl alcohol. J. Nanomater., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/4130569]
[15]
Narasimhan, A.K.; Lakshmi, B.S.; Santra, T.S.; Ramachandra Rao, M.S.; Krishnamurthi, G. Oxygenated graphene quantum dots (GQD) synthesized using laser ablation for long-term realtime tracking and imaging. RSC Advances, 2017, 7, 53822-53829.
[http://dx.doi.org/10.1039/C7RA10702A]
[16]
Huang, H.; Liu, M.; Tuo, X.; Chen, J.; Mao, L.; Wen, Y.; Tian, J.; Zhou, N.; Zhang, X.; Wei, Y.; Wei, Y. A novel thiol-ene click reaction for preparation of graphene quantum dots and their potential for fluorescence imaging. Mater. Sci. Eng. C, 2018, 91, 631-637.
[http://dx.doi.org/10.1016/j.msec.2018.05.025] [PMID: 30033296]
[17]
Liu, X.; Yang, H.M.; Jian, X.; Dai, H.Y.; Song, X.L.; Liang, Z.H. Constructing a novel GQD/PANI/g-C3N4 ternary heterostructure with enhanced photoelectrocatalytic performance. Mater. Lett., 2017, 209, 247-250.
[http://dx.doi.org/10.1016/j.matlet.2017.08.022]
[18]
Lin, X.; Hai, X.; Wang, N.; Chen, X.W.; Wang, J.H. Dual-signal model array sensor based on GQDs/AuNPs system for sensitive protein discrimination. Anal. Chim. Acta, 2017, 992, 105-111.
[http://dx.doi.org/10.1016/j.aca.2017.09.006] [PMID: 29054143]
[19]
Liu, Y.; Xu, L.P.; Wang, Q.; Yang, B.; Zhang, X. Synergistic inhibitory effect of GQD-Tramiprosate covalent binding on amyloid Aggregation. ACS Chem. Neurosci., 2018, 9(4), 817-823.
[http://dx.doi.org/10.1021/acschemneuro.7b00439] [PMID: 29244487]
[20]
Sahub, C.; Tuntulani, T.; Nhujak, T.; Tomapatanaget, B. Effective biosensor based on graphene quantum dots via enzymatic reaction for directly photoluminescence detection of organophosphate pesticide. Sens. Actuators B Chem., 2018, 258, 88-97.
[http://dx.doi.org/10.1016/j.snb.2017.11.072]
[21]
Chen, W.; Weng, W.J.; Niu, X.L.; Li, X.Y.; Men, Y.L.; Sun, W.; Li, G.J. *; Dong L.F. Boron-doped Graphene quantum dots modified electrode for electrochemistry and electrocatalysis of hemoglobin. J. Electroanal. Chem. (Lausanne Switz.), 2018, 823, 137-145.
[http://dx.doi.org/10.1016/j.jelechem.2018.06.001]
[22]
Wang, K.Q.; Dong, J.; Sun, L.P.; Chen, H.Y.; Wang, Y.; Wang, C.X.; Dong, L.F. Effects of elemental doping on the photoluminescence properties of graphene quantum dots. RSC Advances, 2016, 6, 91225-91232.
[http://dx.doi.org/10.1039/C6RA19673J]
[23]
Zheng, W.; Chen, W.; Weng, W.J.; Liu, L.H.; Li, G.J.; Wang, J.W.; Sun, W. Direct electron transfer of horseradish peroxidase at Co3O4 –graphene nanocomposite modified electrode and electrocatalysis. J. Iran. Chem. Soc., 2017, 14, 925-932.
[http://dx.doi.org/10.1007/s13738-016-1042-4]
[24]
Sun, W.; Wang, D.D.; Gao, R.F.; Jiao, K. Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode. Electrochem. Commun., 2007, 9, 1159-1164.
[http://dx.doi.org/10.1016/j.elecom.2007.01.003]
[25]
Zhou, H.; Yang, R.W.; Shang, L.B.; Zhu, Z.Q.; Li, G.X. Electron Transfer Reactivity and the Catalytic Activity of Hemoglobin Incorporated in Dimethylaminoethyl Methacrylate Film. J. Braz. Chem. Soc., 2005, 16, 1195-1199.
[http://dx.doi.org/10.1590/S0103-50532005000700017]
[26]
Zhai, Z.Q.; Wu, J.; Sun, W.; Jiao, K. Direct Electrochemistry of Hemoglobin and its Electrocatalysis Based on a Carbon Nanotube Paste Electrode. J. Chin. Chem. Soc. (Taipei), 2009, 56, 561-567.
[http://dx.doi.org/10.1002/jccs.200900083]
[27]
Shi, F.; Wang, W.C.; Gong, S.X.; Lei, B.X.; Li, G.J.; Lin, X.M.; Sun, Z.F.; Sun, W. Application of Titanium Dioxide Nanowires for the Direct Electrochemistry of Hemoglobin and Electrocatalysis. J. Chin. Chem. Soc. (Taipei), 2015, 62, 554-561.
[http://dx.doi.org/10.1002/jccs.201400373]
[28]
Sun, W.; Zhang, Y.Y.; Wang, X.Z.; Ju, X.M.; Wang, D.; Wu, J.; Sun, Z.F. Electrodeposited Graphene and Silver Nanoparticles Modified Electrode for Direct Electr Electrochemistry and Electrocatalysis of Hemoglobin. Electroanal., 2012, 24, 1973-1979.
[http://dx.doi.org/10.1002/elan.201200103]
[29]
Shi, F.; Zheng, W.; Wang, W.; Hou, F.; Lei, B.; Sun, Z.; Sun, W. Application of graphene-copper sulfide nanocomposite modified electrode for electrochemistry and electrocatalysis of hemoglobin. Biosens. Bioelectron., 2015, 64, 131-137.
[http://dx.doi.org/10.1016/j.bios.2014.08.064] [PMID: 25212067]
[30]
Wang, W.C.; Yan, L.J.; Shi, F.; Niu, X.L.; Huang, G.L.; Zheng, C.J.; Sun, W. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid. Sensors (Basel), 2015, 16(1), 6-17.
[http://dx.doi.org/10.3390/s16010006] [PMID: 26703621]
[31]
Zhan, T.R.; Wang, X.J.; Li, X.J.; Song, Y.; Hou, W.G. Hemoglobin immobilized in exfoliated Co2Al LDH-graphene nanocomposite film: direct electrochemistry and electrocatalysis toward trichloroacetic acid. Sens. Actuators B Chem., 2016, 228, 101-108.
[http://dx.doi.org/10.1016/j.snb.2015.12.095]
[32]
Ruan, C.X.; Sun, Z.L.; Liu, J.; Lou, J.; Gao, W.M.; Sun, W.; Xiao, Y.S. Direct electrochemistry of hemoglobin on an ionic liquid carbon electrode modified with zinc tungstate nanorods. Mikrochim. Acta, 2012, 177, 457-463.
[http://dx.doi.org/10.1007/s00604-012-0796-3]
[33]
Zhao, W.S.; Li, X.Y.; Wen, Z.R.; Niu, X.L.; Shen, Q.F.; Sun, Z.L.; Dong, R.X.; Sun, W. Application of Ionic Liquid-Graphene-NiO Hollowsphere Composite Modified Electrode for Electrochemical Investigation on Hemoglobin and Electrocatalysis to Trichloroacetic Acid. Int. J. Electrochem. Sci., 2017, 12, 4025-4034.
[http://dx.doi.org/10.20964/2017.05.06]
[34]
Sun, W.; Sun, Z.; Zhang, L.; Qi, X.; Li, G.; Wu, J.; Wang, M. Application of Fe3O4 mesoporous sphere modified carbon ionic liquid electrode as electrochemical hemoglobin biosensor. Colloids Surf. B Biointerfaces, 2013, 101, 177-182.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.010] [PMID: 22809593]
[35]
Sun, W.; Wang, D.D.; Li, G.C.; Zhai, Z.Q.; Zhao, R.J.; Jiao, K. Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode. Electrochim. Acta, 2008, 53, 8217-8221.
[http://dx.doi.org/10.1016/j.electacta.2008.06.021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy