Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Antagonistic Property of G2013 (α-L-Guluronic Acid) on Gene Expression of MyD88, Tollip, and NF-κB in HEK293 TLR2 and HEK293 TLR4

Author(s): Laleh Sharifi, Asghar Aghamohammadi, Somaye Aletaha, Razieh Bigdeli, Vahid Asgary, Saied Bokaie, Mohammad Hossein Asgardoon, Gholamreza Azizi and Abbas Mirshafiey*

Volume 19, Issue 2, 2019

Page: [144 - 149] Pages: 6

DOI: 10.2174/1871530319666181126153752

Price: $65

Abstract

Introduction: Inhibition of Toll-like receptors (TLRs) signaling plays a crucial role in suppressing the inflammation and available data presenting G2013 as an immunomodulatory agent, therefore, we designed this study to answer whether G2013 can affect the signaling pathway of TLR2 and TLR4.

Methods: Cytotoxicity study of G2013 was performed by MTT assay. HEK293 TLR2 and HEK293 TLR4 cell lines were cultured and treated with low dose (5µg/ml) and high dose (25µg/ml) of G2013 for 24 hours. Gene expressions of MyD88, Tollip, and NF-κB were defined by quantitative real-time PCR.

Results: The cytotoxicity assay showed that the concentrations lesser than 125μg/ml of G3012 had no apparent cytotoxicity, however, the concentrations of 5µg/ml and 25µg/ml could suppress the mRNA expression of MyD88, Tollip and NF-κB in HEK293 TLR2 and HEK293 TLR4 cell lines.

Conclusion: in our study, we verified the linkage between the immunosuppressive property of G2013 and TLR2, TLR4 signaling cascade; but so far, the specific target of G2013 and its molecular mechanism has not been detected yet. We recommend further studies on other Patten Recognition Receptors (PRRs)and other mechanisms of inflammation like oxidative stress to be conducted in the future.

Keywords: G2013, Guluronic acid, TLR2, TLR4, MyD88, Tollip, NF-κB.

Graphical Abstract
[1]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol., 2010, 11(5), 373-384.
[2]
Liu, Y.; Yin, H.; Zhao, M.; Lu, Q. TLR2 and TLR4 in autoimmune diseases: A comprehensive review. Clin. Rev. Allergy Immunol., 2014, 47(2), 136-147.
[3]
Maglione, P.J.; Simchoni, N.; Cunningham-Rundles, C. Toll-like receptor signaling in primary immune deficiencies. Ann. N. Y. Acad. Sci., 2015.
[4]
Uehara, A.; Fujimoto, Y.; Fukase, K.; Takada, H. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol., 2007, 44(12), 3100-3111.
[5]
Pegu, A.; Qin, S.; Fallert Junecko, B.A.; Nisato, R.E.; Pepper, M.S.; Reinhart, T.A. Human lymphatic endothelial cells express multiple functional TLRs. J. Immunol., 2008, 180(5), 3399-3405.
[6]
Schenten, D.; Medzhitov, R. The control of adaptive immune responses by the innate immune system. Adv. Immunol., 2011, 109, 87-124.
[7]
Gao, W.; Xiong, Y.; Li, Q.; Yang, H. Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: a journey from molecular to nano therapeutics. Front. Physiol., 2017, 8, 508.
[8]
Prattichizzo, F.; De Nigris, V.; Spiga, R.; Mancuso, E.; La Sala, L.; Antonicelli, R.; Testa, R.; Procopio, A.D.; Olivieri, F.; Ceriello, A. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res. Rev., 2018, 41, 1-17.
[9]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[10]
Mirshafiey, A.; Matsuo, H.; Nakane, S.; Rehm, B.H.; Koh, C.S.; Miyoshi, S. Novel immunosuppressive therapy by M2000 in experimental multiple sclerosis. Immunopharmacol. Immunotoxicol., 2005, 27(2), 255-265.
[11]
Fattahi, M.J.; Abdollahi, M.; Agha Mohammadi, A.; Rastkari, N.; Khorasani, R.; Ahmadi, H.; Tofighi Zavareh, F.; Sedaghat, R.; Tabrizian, N.; Mirshafiey, A. Preclinical assessment of β-d-mannuronic acid (M2000) as a non-steroidal anti-inflammatory drug. Immunopharmacol. Immunotoxicol., 2015, 37(6), 535-540.
[12]
Barati, A.; Jamshidi, A.R.; Ahmadi, H.; Aghazadeh, Z.; Mirshafiey, A. Effects of beta-d-mannuronic acid, as a novel non-steroidal anti-inflammatory medication within immunosuppressive properties, on IL17, RORgammat, IL4 and GATA3 gene expressions in rheumatoid arthritis patients. Drug Des. Devel. Ther., 2017, 11, 1027-1033.
[13]
Jahromi, S.S.; Jamshidi, M.M.; Farazmand, A.; Aghazadeh, Z.; Yousefi, M.; Mirshafiey, A. Pharmacological effects of beta-d-mannuronic acid (M2000) on miR-146a, IRAK1, TRAF6 and NF-kappaB gene expression, as target molecules in inflammatory reactions. Pharmacol. Rep., 2017, 69(3), 479-484.
[14]
Radstake, T.R.; Roelofs, M.F.; Jenniskens, Y.M.; Oppers-Walgreen, B.; van Riel, P.L.; Barrera, P.; Joosten, L.A.; van den Berg, W.B. Expression of toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-gamma. Arthritis Rheum., 2004, 50(12), 3856-3865.
[15]
Kowalski, M.L.; Wolska, A.; Grzegorczyk, J.; Hilt, J.; Jarzebska, M.; Drobniewski, M.; Synder, M.; Kurowski, M. Increased responsiveness to toll-like receptor 4 stimulation in peripheral blood mononuclear cells from patients with recent onset rheumatoid arthritis. Mediators Inflamm., 2008, 2008, 132732.
[16]
Kirchner, M.; Sonnenschein, A.; Schoofs, S.; Schmidtke, P.; Umlauf, V.N.; Mannhardt-Laakmann, W. Surface expression and genotypes of Toll-like receptors 2 and 4 in patients with juvenile idiopathic arthritis and systemic lupus erythematosus. Pediatr. Rheumatol. Online J., 2013, 11(1), 9.
[17]
Kwok, S.K.; Cho, M.L.; Her, Y.M.; Oh, H.J.; Park, M.K.; Lee, S.Y.; Woo, Y.J.; Ju, J.H.; Park, K.S.; Kim, H.Y.; Park, S.H. TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in patients with primary Sjogren’s syndrome. Arthritis Res. Ther., 2012, 14(2), R64.
[18]
Carrasco, S.; Neves, F.S.; Fonseca, M.H.; Goncalves, C.R.; Saad, C.G.; Sampaio-Barros, P.D.; Goldenstein-Schainberg, C. Toll-like receptor (TLR) 2 is upregulated on peripheral blood monocytes of patients with psoriatic arthritis: A role for a gram-positive inflammatory trigger? Clin. Exp. Rheumatol., 2011, 29(6), 958-962.
[19]
Garcia-Rodriguez, S.; Arias-Santiago, S.; Perandres-Lopez, R.; Castellote, L.; Zumaquero, E.; Navarro, P.; Buendia-Eisman, A.; Ruiz, J.C.; Orgaz-Molina, J.; Sancho, J.; Zubiaur, M. Increased gene expression of Toll-like receptor 4 on peripheral blood mononuclear cells in patients with psoriasis. J. Eur. Acad. Dermatol. Venereol., 2013, 27(2), 242-250.
[20]
Andersson, A.; Covacu, R.; Sunnemark, D.; Danilov, A.I.; Dal Bianco, A.; Khademi, M.; Wallstrom, E.; Lobell, A.; Brundin, L.; Lassmann, H.; Harris, R.A. Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J. Leukoc. Biol., 2008, 84(5), 1248-1255.
[21]
De Jager, P.L.; Franchimont, D.; Waliszewska, A.; Bitton, A.; Cohen, A.; Langelier, D.; Belaiche, J.; Vermeire, S.; Farwell, L.; Goris, A.; Libioulle, C.; Jani, N.; Dassopoulos, T.; Bromfield, G.P.; Dubois, B.; Cho, J.H.; Brant, S.R.; Duerr, R.H.; Yang, H.; Rotter, J.I.; Silverberg, M.S.; Steinhart, A.H.; Daly, M.J.; Podolsky, D.K.; Louis, E.; Hafler, D.A.; Rioux, J.D.; Quebec, I.B.D.G.C.; Consortium, N.I.G. The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun., 2007, 8(5), 387-397.
[22]
Menon, M.B.; Gaestel, M. TPL2 meets p38MAPK: Emergence of a novel positive feedback loop in inflammation. Biochem. J., 2016, 473(19), 2995-2999.
[23]
Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol., 2004, 4(7), 499-511.
[24]
Didierlaurent, A.; Brissoni, B.; Velin, D.; Aebi, N.; Tardivel, A.; Kaslin, E.; Sirard, J.C.; Angelov, G.; Tschopp, J.; Burns, K. Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol. Cell. Biol., 2006, 26(3), 735-742.
[25]
Bourgeois-Daigneault, M.C.; Pezeshki, A.M.; Galbas, T.; Houde, M.; Baril, M.; Fruh, K.; Amrani, A.; Ishido, S.; Lamarre, D.; Thibodeau, J. Tollip-induced down-regulation of MARCH1. Results Immunol., 2013, 3, 17-25.
[26]
Sharifi, L.; Aghamohammadi, A.; Mohsenzadegan, M.; Rezaei, N.; Towfighi Zavareh, F.; Moshiri, M.; Bokaie, S.; Barati, A.; Sayedi, S.J.; Azizi, G.; Mirshafiey, A. Immunomodulation of TLR2 and TLR4 by G2013 (alfa-L-Guluronic acid) in CVID Patients. Int. J. Pediatr., 2017, 5(7), 5327-5337.
[27]
Sharifi, L.; Aghamohammadi, A.; Rezaei, N.; Yazdani, R.; Mahmoudi, M.; Amiri, M.M.; Masoumi, F.; Bokaie, S.; Tavasolian, P.; Sanaei, R.; Moshiri, M.; Tavakolinia, N.; Alinia, T.; Azizi, G.; Mirshafiey, A. The Profile of Toll-like Receptor 2 (TLR2), TLR4 and Their Cytosolic Downstream Signaling Pathway in Common Variable Immunodeficiency (CVID) Patients. Iran. J. Allergy Asthma Immunol., 2018, 17(2), 188-200.
[28]
Netea, M.G.; van der Graaf, C.; Van der Meer, J.W.; Kullberg, B.J. Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J. Leukoc. Biol., 2004, 75(5), 749-755.
[29]
Afraei, S.; Azizi, G.; Zargar, S.J.; Sedaghat, R.; Mirshafiey, A. New therapeutic approach by G2013 in experimental model of multiple sclerosis. Acta Neurol. Belg., 2015, 115(3), 259-266.
[30]
Mirshafiey, A.; Hosseini, S.; Afraei, S.; Rastkari, N.; Zavareh, F.T.; Azizi, G. Anti-aging property of G2013 molecule as a novel immunosuppressive agent on enzymatic and non-enzymatic oxidative stress determinants in Rat model. Curr. Drug Discov. Technol., 2016, 13(1), 25-33.
[31]
Nazeri, S.; Khadem Azarian, S.; Fattahi, M.J.; Sedaghat, R.; Tofighi Zavareh, F.; Aghazadeh, Z.; Abdollahi, M.; Mirshafiey, A. Preclinical and pharmacotoxicology evaluation of alpha-l-guluronic acid (G2013) as a non-steroidal anti-inflammatory drug with immunomodulatory property. Immunopharmacol. Immunotoxicol., 2017, 39(2), 59-65.
[32]
Arjomand Fard, N.; Tabrizian, N.; Mirzaei, R.; Hadjati, J.; Tofighi Zavareh, F.; Salehi Nodeh, A.R.; Mirshafiey, A. Efficacy and safety of g2013 as a novel immunosuppressive agent on differentiation, maturation and function of human dendritic cells. Iran. J. Public Health, 2017, 46(2), 216-221.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy