Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Effects of Myricitrin and Relevant Molecular Mechanisms

Author(s): Xinliang Zhang, Ke Zhang, Youhan Wang and Rui Ma*

Volume 15, Issue 1, 2020

Page: [11 - 17] Pages: 7

DOI: 10.2174/1574888X14666181126103338

Price: $65

Abstract

In humans, oxidative stress is thought to be involved in the development of Parkinson's disease, Alzheimer's disease, atherosclerosis, heart failure, myocardial infarction and depression. Myricitrin, a botanical flavone, is abundantly distributed in the root bark of Myrica cerifera, Myrica esculenta, Ampelopsis grossedentata, Nymphaea lotus, Chrysobalanus icaco, and other plants. Considering the abundance of its natural sources, myricitrin is relatively easy to extract and purify. Myricitrin reportedly possesses effective anti-oxidative, anti-inflammatory, and anti-nociceptive activities, and can protect a variety of cells from in vitro and in vivo injuries. Therefore, our current review summarizes the research progress of myricitrin in cardiovascular diseases, nerve injury and anti-inflammatory, and provides new ideas for the development of myricitrin.

Keywords: Myricitrin, nervous system, cardiovascular, inflammation, osteoporosis, oxidative stress.

[1]
Liu A, Wu Q, Guo J, et al. Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacol Ther 2019; 195: 54-84.
[PMID: 30321555]
[2]
Chen P, Bornhorst J, Diana Neely M, Avila DS. Mechanisms and disease pathogenesis underlying metal-induced oxidative stress. Oxid Med Cell Longev 2018; 20187612172
[http://dx.doi.org/10.1155/2018/7612172] [PMID: 30319733]
[3]
Winiarska-Mieczan A. Protective effect of tea against lead and cadmium-induced oxidative stress-a review. Biometals 2018; 31(6): 909-26.
[http://dx.doi.org/10.1007/s10534-018-0153-z]
[4]
Raguraman V. L SA, J J, et al. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model. Carbohydr Polym 2019; 203: 441-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.056] [PMID: 30318233]
[5]
Bao J, Cai Y, Sun M, Wang G, Corke H. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J Agric Food Chem 2005; 53(6): 2327-32.
[http://dx.doi.org/10.1021/jf048312z] [PMID: 15769176]
[6]
Matsuda H, Higashino M, Chen W, Tosa H, Iinuma M, Kubo M. Studies of cuticle drugs from natural sources. III. Inhibitory effect of Myrica rubra on melanin biosynthesis. Biol Pharm Bull 1995; 18(8): 1148-50.
[http://dx.doi.org/10.1248/bpb.18.1148] [PMID: 8535414]
[7]
Matsuda H, Yamazaki M, Matsuo K, Asanuma Y, Kubo M. Anti-androgenic activity of Myricae Cortex--isolation of active constituents from bark of Myrica rubra. Biol Pharm Bull 2001; 24(3): 259-63.
[http://dx.doi.org/10.1248/bpb.24.259] [PMID: 11256481]
[8]
Meotti FC, Fachinetto R, Maffi LC, et al. Antinociceptive action of myricitrin: Involvement of the K+ and Ca2+ channels. Eur J Pharmacol 2007; 567(3): 198-205.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.039] [PMID: 17467689]
[9]
Meotti FC, Missau FC, Ferreira J, et al. Anti-allodynic property of flavonoid myricitrin in models of persistent inflammatory and neuropathic pain in mice. Biochem Pharmacol 2006; 72(12): 1707-13.
[http://dx.doi.org/10.1016/j.bcp.2006.08.028] [PMID: 17070780]
[10]
Meotti FC, Senthilmohan R, Harwood DT, Missau FC, Pizzolatti MG, Kettle AJ. Myricitrin as a substrate and inhibitor of myeloperoxidase: Implications for the pharmacological effects of flavonoids. Free Radic Biol Med 2008; 44(1): 109-20.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.09.017] [PMID: 17963707]
[11]
Pereira M, Siba IP, Chioca LR, et al. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(7): 1636-44.
[http://dx.doi.org/10.1016/j.pnpbp.2011.06.002] [PMID: 21689712]
[12]
Domitrović R, Rashed K, Cvijanović O, Vladimir-Knežević S, Škoda M, Višnić A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem Biol Interact 2015; 230: 21-9.
[http://dx.doi.org/10.1016/j.cbi.2015.01.030] [PMID: 25656916]
[13]
Due MR, Park J, Zheng L, et al. Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat. J Neurochem 2014; 128(5): 776-86.
[http://dx.doi.org/10.1111/jnc.12500] [PMID: 24147766]
[14]
Dulin JN, Karoly ED, Wang Y, Strobel HW, Grill RJ. Licofelone modulates neuroinflammation and attenuates mechanical hypersensitivity in the chronic phase of spinal cord injury. J Neurosci 2013; 33(2): 652-64.
[http://dx.doi.org/10.1523/JNEUROSCI.6128-11.2013] [PMID: 23303944]
[15]
Lei Y. Myricitrin decreases traumatic injury of the spinal cord and exhibits antioxidant and anti-inflammatory activities in a rat model via inhibition of COX-2, TGF-β1, p53 and elevation of Bcl-2/Bax signaling pathway. Mol Med Rep 2017; 16(5): 7699-705.
[http://dx.doi.org/10.3892/mmr.2017.7567] [PMID: 28944905]
[16]
Bethea JR, Dietrich WD. Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol 2002; 15(3): 355-60.
[http://dx.doi.org/10.1097/00019052-200206000-00021] [PMID: 12045737]
[17]
Faller S, Hausler F, Goeft A, et al. Hydrogen sulfide limits neutrophil transmigration, inflammation, and oxidative burst in lipopolysaccharide-induced acute lung injury. Sci Rep 2018; 8(1): 14676.
[http://dx.doi.org/10.1038/s41598-018-33101-x] [PMID: 30279441]
[18]
Yang YZ, Xiang Y, Chen M, Xian LN, Deng XY. Clinical significance of dynamic detection for serum levels of MCP-1, TNF-α and IL-8 in patients with acute pancreatitis. Asian Pac J Trop Med 2016; 9(11): 1111-4.
[http://dx.doi.org/10.1016/j.apjtm.2016.09.001] [PMID: 27890374]
[19]
Yoon DS, Yoo JH, Kim YH, Paik S, Han CD, Lee JW. The effects of COX-2 inhibitor during osteogenic differentiation of bone marrow-derived human mesenchymal stem cells. Stem Cells Dev 2010; 19(10): 1523-33.
[http://dx.doi.org/10.1089/scd.2009.0393] [PMID: 20095820]
[20]
Zani A, Cananzi M, Fascetti-Leon F, et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut 2014; 63(2): 300-9.
[http://dx.doi.org/10.1136/gutjnl-2012-303735] [PMID: 23525603]
[21]
Oliveira SD, Nanini HF, Savio LE, Waghabi MC, Silva CL, Coutinho-Silva R. Macrophage P2X7 receptor function is reduced during schistosomiasis: Putative role of TGF- β1. Mediators Inflamm 2014; 2014134974
[http://dx.doi.org/10.1155/2014/134974] [PMID: 25276050]
[22]
Xiyang YB, Lu BT. Ya-Zhao , et al.Expressional difference, distributions of TGF-β1 in TGF-β1 knock down transgenic mouse, and its possible roles in injured spinal cord. Exp Biol Med (Maywood) 2014; 239(3): 320-9.
[http://dx.doi.org/10.1177/1535370213509562] [PMID: 24535836]
[23]
Kim HL, Ra H, Kim KR, Lee JM, Im H, Kim YH. Poly(ADP-ribosyl)ation of p53 contributes to TPEN-induced neuronal apoptosis. Mol Cells 2015; 38(4): 312-7.
[http://dx.doi.org/10.14348/molcells.2015.2142] [PMID: 25813624]
[24]
Lee IN, Cheng WC, Chung CY, et al. Dexamethasone reduces brain cell apoptosis and inhibits inflammatory response in rats with intracerebral hemorrhage. J Neurosci Res 2015; 93(1): 178-88.
[http://dx.doi.org/10.1002/jnr.23454] [PMID: 25042403]
[25]
Kim HD, Jeong KH, Jung UJ, Kim SR. Myricitrin ameliorates 6-hydroxydopamine-induced dopaminergic neuronal loss in the substantia nigra of mouse brain. J Med Food 2016; 19(4): 374-82.
[http://dx.doi.org/10.1089/jmf.2015.3581] [PMID: 26991235]
[26]
Wang X, Chu Y, Wang W, Yuan W. mTORC signaling in hematopoiesis. Int J Hematol 2016; 103(5): 510-8.
[http://dx.doi.org/10.1007/s12185-016-1944-z] [PMID: 26791377]
[27]
Royo M, Fitzpatrick PF, Daubner SC. Mutation of regulatory serines of rat tyrosine hydroxylase to glutamate: Effects on enzyme stability and activity. Arch Biochem Biophys 2005; 434(2): 266-74.
[http://dx.doi.org/10.1016/j.abb.2004.11.007] [PMID: 15639226]
[28]
Kim SR, Chung ES, Bok E, et al. Prothrombin kringle-2 induces death of mesencephalic dopaminergic neurons in vivo and in vitro via microglial activation. J Neurosci Res 2010; 88(7): 1537-48.
[PMID: 20025058]
[29]
Pfeiffer RF. Neuroinflammation and Parkinson disease: The silent battleground. Neurology 2009; 73(18): 1434-5.
[http://dx.doi.org/10.1212/WNL.0b013e3181c2f07d] [PMID: 19812378]
[30]
Choi SH, Joe EH, Kim SU, Jin BK. Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J Neurosci 2003; 23(13): 5877-86.
[http://dx.doi.org/10.1523/JNEUROSCI.23-13-05877.2003] [PMID: 12843292]
[31]
Bernstein HG, Bogerts B, Keilhoff G. The many faces of nitric oxide in schizophrenia. A review. Schizophr Res 2005; 78(1): 69-86.
[http://dx.doi.org/10.1016/j.schres.2005.05.019] [PMID: 16005189]
[32]
Del Bel EA, Guimarães FS. Sub-chronic inhibition of nitric-oxide synthesis modifies haloperidol-induced catalepsy and the number of NADPH-diaphorase neurons in mice. Psychopharmacology (Berl) 2000; 147(4): 356-61.
[http://dx.doi.org/10.1007/s002130050003] [PMID: 10672628]
[33]
Fujiyama F, Masuko S. Association of dopaminergic terminals and neurons releasing nitric oxide in the rat striatum: An electron microscopic study using NADPH-diaphorase histochemistry and tyrosine hydroxylase immunohistochemistry. Brain Res Bull 1996; 40(2): 121-7.
[http://dx.doi.org/10.1016/0361-9230(96)00035-4] [PMID: 8724430]
[34]
Hong JT, Kim HC, Kim HS, Lee YM, Oh KW. The role of nitric oxide on glutaminergic modulation of dopaminergic activation. Pharmacol Res 2005; 52(4): 298-301.
[http://dx.doi.org/10.1016/j.phrs.2005.05.002] [PMID: 15939623]
[35]
Pires JG, Costa PG, Saraiva FP, Bonikovski V, Futuro Neto HA. Gender-related differences in the effects of nitric oxide donors on neuroleptic-induced catalepsy in mice. Braz J Med Biol Res 2003; 36(2): 239-45.
[http://dx.doi.org/10.1590/S0100-879X2003000200012] [PMID: 12563527]
[36]
West AR, Galloway MP, Grace AA. Regulation of striatal dopamine neurotransmission by nitric oxide: Effector pathways and signaling mechanisms. Synapse 2002; 44(4): 227-45.
[http://dx.doi.org/10.1002/syn.10076] [PMID: 11984858]
[37]
Wiley JL. Nitric oxide synthase inhibitors attenuate phencyclidine-induced disruption of prepulse inhibition. Neuropsychopharmacology 1998; 19(1): 86-94.
[http://dx.doi.org/10.1016/S0893-133X(98)00008-6] [PMID: 9608580]
[38]
Meyer E, Mori MA, Campos AC, et al. Myricitrin induces antidepressant-like effects and facilitates adult neurogenesis in mice. Behav Brain Res 2017; 316: 59-65.
[http://dx.doi.org/10.1016/j.bbr.2016.08.048] [PMID: 27569185]
[39]
Shimabukuro T, Yamamoto M, Mitsui H, Yamamoto N, Sakatoku J, Shinohara Y. Study of flow cytometric BrdU/DNA assay Nihon Gan Chiryo Gakkai shi 1989; 24(6): 1249-55.
[40]
Takemoto O, Yoshimine T, Hayakawa T, et al. [Astrocytic proliferation in the brain adjacent to infarcted lesion: immunohistochemical study of astroprotein (GFAP) and bromodeoxyuridine (BrdU)]. No To Shinkei 1989; 41(4): 361-5.
[PMID: 2765300]
[41]
Pokk P, Väli M. Effects of nitric oxide synthase inhibitors 7-NI, L-NAME, and L-NOARG in staircase test. Arch Med Res 2002; 33(3): 265-8.
[http://dx.doi.org/10.1016/S0188-4409(02)00365-X] [PMID: 12031632]
[42]
Chen Y, Yang L, Lee TJ. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappaB activation. Biochem Pharmacol 2000; 59(11): 1445-57.
[http://dx.doi.org/10.1016/S0006-2952(00)00255-0] [PMID: 10751555]
[43]
Porsolt RD. Serotonin: neurotransmitter “a la mode”. Report on the third international I.T.E.M.-LABO symposium on strategies in psychopharmacology: serotonin: Animal models and clinical targets. Pharmacopsychiatry 1993; 26(1): 20-4.
[http://dx.doi.org/10.1055/s-2007-1014336] [PMID: 8378408]
[44]
Chen W, Zhuang J, Li Y, Shen Y, Zheng X. Myricitrin protects against peroxynitrite-mediated DNA damage and cytotoxicity in astrocytes. Food Chem 2013; 141(2): 927-33.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.033] [PMID: 23790869]
[45]
Maronpot RR, Hobbs CA, Hayashi SM. Role of pathology peer review in interpretation of the comet assay. J Toxicol Pathol 2018; 31(3): 155-61.
[http://dx.doi.org/10.1293/tox.2018-0019] [PMID: 30093784]
[46]
Li J, Zhang M, Ma J. Myricitrin inhibits PDGF-BB-stimulated vascular smooth muscle cell proliferation and migration through suppressing PDGFRβ/Akt/Erk signaling. Int J Clin Exp Med 2015; 8(11): 21715-23.
[PMID: 26885133]
[47]
Qin M, Luo Y, Meng XB, et al. Myricitrin attenuates endothelial cell apoptosis to prevent atherosclerosis: An insight into PI3K/Akt activation and STAT3 signaling pathways. Vascul Pharmacol 2015; 70: 23-34.
[http://dx.doi.org/10.1016/j.vph.2015.03.002] [PMID: 25849952]
[48]
Wang M, Sun GB, Du YY, et al. Myricitrin protects cardiomyocytes from hypoxia/reoxygenation injury: Involvement of heat shock protein 90. Front Pharmacol 2017; 8: 353.
[http://dx.doi.org/10.3389/fphar.2017.00353] [PMID: 28642708]
[49]
Zhang B, Chen Y, Shen Q, et al. Myricitrin attenuates high glucose-induced apoptosis through activating Akt-Nrf2 signaling in H9c2 cardiomyocytes. Molecules 2016; 21(7)E880
[http://dx.doi.org/10.3390/molecules21070880] [PMID: 27399653]
[50]
Zhang B, Shen Q, Chen Y, et al. Myricitrin alleviates oxidative stress-induced inflammation and apoptosis and protects mice against diabetic cardiomyopathy. Sci Rep 2017; 7: 44239.
[http://dx.doi.org/10.1038/srep44239] [PMID: 28287141]
[51]
Sun J, Sun G, Cui X, Meng X, Qin M, Sun X. Myricitrin Protects against Doxorubicin-Induced Cardiotoxicity by Counteracting Oxidative Stress and Inhibiting Mitochondrial Apoptosis via ERK/P53 Pathway. Evid Based Complement Alternat Med 2016; 20166093783
[http://dx.doi.org/10.1155/2016/6093783] [PMID: 27703489]
[52]
Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: Do all roads pass through mTOR? Oncogene 2006; 25(48): 6347-60.
[http://dx.doi.org/10.1038/sj.onc.1209885] [PMID: 17041621]
[53]
Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320(14): 915-24.
[PMID: 2648148]
[54]
Palinski W, Rosenfeld ME, Ylä-Herttuala S, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989; 86(4): 1372-6.
[http://dx.doi.org/10.1073/pnas.86.4.1372] [PMID: 2465552]
[55]
Parthasarathy S, Wieland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA 1989; 86(3): 1046-50.
[http://dx.doi.org/10.1073/pnas.86.3.1046] [PMID: 2536929]
[56]
Bai YP, Hu CP, Yuan Q, et al. Role of VPO1, a newly identified heme-containing peroxidase, in ox-LDL induced endothelial cell apoptosis. Free Radic Biol Med 2011; 51(8): 1492-500.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.07.004] [PMID: 21820048]
[57]
Kuo CC, Liang CM, Lai CY, Liang SM. Involvement of heat shock protein (Hsp)90 beta but not Hsp90 alpha in antiapoptotic effect of CpG-B oligodeoxynucleotide. J Immunol 2007; 178(10): 6100-8.
[http://dx.doi.org/10.4049/jimmunol.178.10.6100] [PMID: 17475835]
[58]
Barksdale KA, Bijur GN. The basal flux of Akt in the mitochondria is mediated by heat shock protein 90. J Neurochem 2009; 108(5): 1289-99.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05878.x] [PMID: 19187436]
[59]
Pontes FSC, Pontes HAR, de Souza LL, et al. Effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on Akt protein expression is more effective in head and neck cancer cell lineages that retain PTEN protein expression. JOPM 2018; 47(3): 253-9.
[60]
Wu K, Xu W, You Q, et al. Increased expression of heat shock protein 90 under chemical hypoxic conditions protects cardiomyocytes against injury induced by serum and glucose deprivation. Int J Mol Med 2012; 30(5): 1138-44.
[http://dx.doi.org/10.3892/ijmm.2012.1099] [PMID: 22922826]
[61]
Cui HY, Zhang XJ, Yang Y, et al. Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling. Neural Regen Res 2018; 13(12): 2119-28.
[http://dx.doi.org/10.4103/1673-5374.241463] [PMID: 30323140]
[62]
Duan J, Wei G, Guo C, et al. Aralia taibaiensis protects cardiac myocytes against high glucose-induced oxidative stress and apoptosis. Am J Chin Med 2015; 43(6): 1159-75.
[http://dx.doi.org/10.1142/S0192415X15500664] [PMID: 26446201]
[63]
Zhou Y, Liu H, Song J, Cao L, Tang L, Qi C. Sinomenine alleviates dextran sulfate sodium-induced colitis via the Nrf2/NQO-1 signaling pathway. Mol Med Rep 2018; 18(4): 3691-8.
[http://dx.doi.org/10.3892/mmr.2018.9378] [PMID: 30106158]
[64]
Kim HJ, Zheng M, Kim SK, et al. CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation. Immune Netw 2011; 11(6): 376-82.
[http://dx.doi.org/10.4110/in.2011.11.6.376] [PMID: 22346778]
[65]
Kalyanaraman B, Joseph J, Kalivendi S, Wang S, Konorev E, Kotamraju S. Doxorubicin-induced apoptosis: Implications in cardiotoxicity. Mol Cell Biochem 2002; 234-235(1-2): 119-24.
[http://dx.doi.org/10.1023/A:1015976430790] [PMID: 12162424]
[66]
Lawal AO, Marnewick JL, Ellis EM. Heme oxygenase-1 attenuates cadmium-induced mitochondrial-caspase 3- dependent apoptosis in human hepatoma cell line. BMC Pharmacol Toxicol 2015; 16: 41.
[http://dx.doi.org/10.1186/s40360-015-0040-y] [PMID: 26670903]
[67]
Zhang F, Kong DS, Zhang ZL, et al. Tetramethylpyrazine induces G0/G1 cell cycle arrest and stimulates mitochondrial-mediated and caspase-dependent apoptosis through modulating ERK/p53 signaling in hepatic stellate cells in vitro. Apoptosis 2013; 18(2): 135-49.
[68]
Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: Roles of the receptor complex. Pharmacol Ther 2003; 100(2): 171-94.
[http://dx.doi.org/10.1016/j.pharmthera.2003.08.003] [PMID: 14609719]
[69]
Feng Q, Ren Y, Wang Y, et al. Anti-inflammatory effect of SQC-beta-CD on lipopolysaccharide-induced acute lung injury. J Ethnopharmacol 2008; 118(1): 51-8.
[http://dx.doi.org/10.1016/j.jep.2008.03.025] [PMID: 18495394]
[70]
Qi S, Feng Z, Li Q, Qi Z, Zhang Y. Myricitrin modulates NADPH oxidase-dependent ROS production to inhibit endotoxin-mediated inflammation by blocking the JAK/STAT1 and NOX2/p47phox pathways. Oxid Med Cell Longev 2017; 20179738745
[http://dx.doi.org/10.1155/2017/9738745] [PMID: 28751937]
[71]
Parsons PE, Worthen GS, Moore EE, Tate RM, Henson PM. The association of circulating endotoxin with the development of the adult respiratory distress syndrome. Am Rev Respir Dis 1989; 140(2): 294-301.
[http://dx.doi.org/10.1164/ajrccm/140.2.294] [PMID: 2764364]
[72]
Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 2008; 456(7219): 259-63.
[http://dx.doi.org/10.1038/nature07416] [PMID: 18849966]
[73]
Wei J, Feng J. Signaling pathways associated with inflammatory bowel disease. Recent Pat Inflamm Allergy Drug Discov 2010; 4(2): 105-17.
[http://dx.doi.org/10.2174/187221310791163071] [PMID: 20001899]
[74]
Schwanke RC, Marcon R, Meotti FC, et al. Oral administration of the flavonoid myricitrin prevents dextran sulfate sodium-induced experimental colitis in mice through modulation of PI3K/Akt signaling pathway. Mol Nutr Food Res 2013; 57(11): 1938-49.
[http://dx.doi.org/10.1002/mnfr.201300134] [PMID: 23861337]
[75]
Meotti FC, Luiz AP, Pizzolatti MG, Kassuya CA, Calixto JB, Santos AR. Analysis of the antinociceptive effect of the flavonoid myricitrin: Evidence for a role of the L-arginine-nitric oxide and protein kinase C pathways. J Pharmacol Exp Ther 2006; 316(2): 789-96.
[http://dx.doi.org/10.1124/jpet.105.092825] [PMID: 16260583]
[76]
Meotti FC, Posser T, Missau FC, Pizzolatti MG, Leal RB, Santos AR. Involvement of p38MAPK on the antinociceptive action of myricitrin in mice. Biochem Pharmacol 2007; 74(6): 924-31.
[http://dx.doi.org/10.1016/j.bcp.2007.06.024] [PMID: 17678631]
[77]
van Staa TP, Geusens P, Bijlsma JW, Leufkens HG, Cooper C. Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum 2006; 54(10): 3104-12.
[http://dx.doi.org/10.1002/art.22117] [PMID: 17009229]
[78]
Kocijan R, Englbrecht M, Haschka J, et al. Quantitative and qualitative changes of bone in psoriasis and psoriatic arthritis patients. J Bone Miner Res 2015; 30(10): 1775-83.
[http://dx.doi.org/10.1002/jbmr.2521]
[79]
Rubbert-Roth A, Finckh A. Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy: A critical review. Arthritis Res Ther 2009; 11(Suppl. 1): S1.
[http://dx.doi.org/10.1186/ar2666] [PMID: 19368701]
[80]
Kitazawa R, Kimble RB, Vannice JL, Kung VT, Pacifici R. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J Clin Invest 1994; 94(6): 2397-406.
[http://dx.doi.org/10.1172/JCI117606] [PMID: 7989596 ]
[81]
Huang Q, Gao B, Wang L, et al. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines. Toxicol Appl Pharmacol 2014; 280(3): 550-60.
[http://dx.doi.org/10.1016/j.taap.2014.08.004] [PMID: 25130202]
[82]
Wang B, Hao D, Zhang Z, et al. Inhibition effects of a natural inhibitor on RANKL downstream cellular signalling cascades cross-talking. J Cell Mol Med 2018; 22(9): 4236-42.
[http://dx.doi.org/10.1111/jcmm.13703] [PMID: 29911332]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy