Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Green Synthesis of Silver Nanoparticles from Aqueous Leaf Extract of 'Selaginella bryopteris' and Elucidation of its Antimicrobial Activity

Author(s): Varsha Yadav, Neha Kapoor*, Soma M. Ghorai and Pradeep

Volume 16, Issue 4, 2020

Page: [449 - 459] Pages: 11

DOI: 10.2174/1573407215666181122121039

Price: $65

Abstract

Background: Biosynthesis of nanoparticles from aqueous leaf extract of ‘Selaginella bryopteris’ is a green chemistry approach and is considered to be one of the most efficient methods as it is devoid of toxic chemicals as well as provides natural capping agents for the stabilization of synthesized nanoparticles. ‘S.bryopteris’ also known as ‘Sanjeevani’ (in India), is thought to be prospective natural resource that possesses extraordinary pharmaceutical potential.

Objective: S. bryopteris is exclusively native to India and has already been known for its expression of stress-associated genes and high levels of protective metabolites of sugars, phenolic compounds, and polyols. Its potential as an antibacterial agent is being elucidated.

Methods: Different leaf extract volumes, silver nitrate (AgNO3) concentrations, and reaction time were investigated separately and the optimal conditions for the synthesis of AgNPs were suggested. The resulting AgNPs were characterized by various techniques like Ultraviolet-Visible (UV-Vis) Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD). Antibacterial assays were carried out by using both agar disk and well diffusion method.

Result: The AgNPs synthesized in this process were found to have efficient antimicrobial activity against both Gram-positive as well as Gram-negative bacteria. The antibacterial efficacy of S. bryopteris was consciously tried on uropathogenic Escherichia coli (Gram-negative bacteria) and Bacillus megaterium (Gram-positive bacteria) which have the self-limiting food poisoning potential along with opportunistic uropathogenic bacterial strains namely Proteus mirabilis (Gram-negative bacteria) and a non-pathogenic Micrococcus luteus (Gram-positive bacteria) for comparison.

Conclusion: S. bryopteris mediated silver nanoparticles’ synthesis is attempted for being cost-effective, eco-friendly and safe for human therapeutics.

Keywords: Biomimetic, silver nanoparticles, phytochemicals, antimicrobial activity, natural product, therapeutics.

Graphical Abstract
[1]
EU Commission Recommendation on the definition of nanomaterial (2011/696/EU). Off. J. Eur. Union., 2011, L275(38)
[2]
Adlakha-Hutcheon, G.; Khaydarov, R.; Korenstein, R.; Varma, R.; Vaseashta, A.; Stamm, H.; Abdel-Mottaleb, M. Nanomaterials, nanotechnology. Nanomaterials: Risks and benefits. NATO science for peace and security series C: Environmental Security.Biotechnology; Linkov, I.; Steevens, J., Eds.; Springer: Netherlands, 2009, 19, pp. 195-207.
[http://dx.doi.org/10.1007/978-1-4020-9491-0_14]
[3]
Srinithya, B.; Kumar, V.V.; Vadivel, V.J. Synthesis of biofunctionalized AgNPs using medicinally important Sida cordifolia leaf extract for enhanced antioxidant and anticancer activities. Mater. Lett., 2016, 170, 101-104.
[http://dx.doi.org/10.1016/j.matlet.2016.02.019]
[4]
El-Naggar, N.E.; Hussein, M.H.; El-Sawah, A.A. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Sci. Rep., 2017, 7(1), 10844.
[http://dx.doi.org/10.1038/s41598-017-11121-3] [PMID: 28883419]
[5]
Hoffman, A.J.; Mills, G.; Yee, H.; Hoffmann, M.R. Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J. Phys. Chem., 1992, 96(13), 5546-5552.
[http://dx.doi.org/10.1021/j100192a067]
[6]
Mansur, H.S.; Grieser, F.; Marychurch, M.S.; Biggs, S.; Urquhart, R.S.; Furlong, D.N. Photoelectrochemical properties of ‘Q-state’ CdS particles in arachidic acid langmuir-blodgett films. J. Chem. Soc., Faraday Trans., 1995, 91(4), 665-672.
[http://dx.doi.org/10.1039/FT9959100665]
[7]
Agarwal, H.; Kumar, S.V.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles - An eco-friendly approach. Resource-Efficient Techno, 2017, 3(4), 406-413.
[http://dx.doi.org/10.1016/j.reffit.2017.03.002]
[8]
Wang, Y.; Herron, N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem., 1991, 95(2), 525-532.
[http://dx.doi.org/10.1021/j100155a009]
[9]
Schmid, G. Large clusters and colloids: Metals in the embryonic state. Chem. Rev., 1992, 92(8), 1709-1727.
[http://dx.doi.org/10.1021/cr00016a002]
[10]
Matejka, P.; Vlckova, B.; Vohlidal, J.; Pancoska, P.; Baumruk, V. The role of triton X-100 as an adsorbate and a molecular spacer on the surface of silver colloid: a surface-enhanced Raman scattering study. J. Phys. Chem., 1992, 96(3), 1361-1366.
[http://dx.doi.org/10.1021/j100182a063]
[11]
Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA, 1999, 96(24), 13611-13614.
[http://dx.doi.org/10.1073/pnas.96.24.13611] [PMID: 10570120]
[12]
Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10), 2346-2353.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[13]
Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.; Chiu, J.F.; Che, C.M. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem., 2007, 12(4), 527-534.
[http://dx.doi.org/10.1007/s00775-007-0208-z] [PMID: 17353996]
[14]
Ganeshaiah, K.N.; Vasudeva, R.; Shaanker, R.U. In search of Sanjeevani. Curr. Sci., 2009, 97(4), 484-489.
[15]
Miao, N.; Tao, H.; Tong, C.; Xuan, H.; Zhamg, G. [The Selaginella tamariscina (Beauv.) Spring complex in the treatment of experimental diabetes and its effect on blood rheology]. Zhongguo Zhongyao Zazhi, 1996, 21(8), 493-495, 512.
[PMID: 9642416]
[16]
Lee, S.; Kim, H.; Kang, J.W.; Kim, J.H.; Lee, D.H.; Kim, M.S.; Yang, Y.; Woo, E.R.; Kim, Y.M.; Hong, J.; Yoon, D.Y. The biflavonoid amentoflavone induces apoptosis via suppressing E7 expression, cell cycle arrest at sub-G1 phase, and mitochondria-emanated intrinsic pathways in human cervical cancer cells. J. Med. Food, 2011, 14(7-8), 808-816.
[http://dx.doi.org/10.1089/jmf.2010.1428] [PMID: 21663495]
[17]
Lee, J.; Choi, Y.; Woo, E.R.; Lee, D.G. Antibacterial and synergistic activity of isocryptomerin isolated from Selaginella tamariscina. J. Microbiol. Biotechnol., 2009, 19(2), 204-207.
[http://dx.doi.org/10.4014/jmb.0810.566] [PMID: 19307771]
[18]
Ahn, S.H.; Mun, Y.J.; Lee, S.W.; Kwak, S.; Choi, M.K.; Baik, S.K.; Kim, Y.M.; Woo, W.H. Selaginella tamariscina induces apoptosis via a caspase-3-mediated mechanism in human promyelocytic leukemia cells. J. Med. Food, 2006, 9(2), 138-144.
[http://dx.doi.org/10.1089/jmf.2006.9.138] [PMID: 16822197]
[19]
Le, M.H.; Do, T.T.; Hoang, T.H.; Chau, V.M.; Nguyen, T.D. Toxicity and anticancer effects of an extract from Selaginella tamariscina on a mice model. Nat. Prod. Res., 2012, 26(12), 1130-1134.
[http://dx.doi.org/10.1080/14786419.2011.560847] [PMID: 21995305]
[20]
Silva, G.L.; Chai, H.; Gupta, M.P.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Beecher, C.W.; Kinghorn, A.D. Cytotoxic biflavonoids from Selaginella willdenowii. Phytochemistry, 1995, 40(1), 129-134.
[http://dx.doi.org/10.1016/0031-9422(95)00212-P] [PMID: 7546547]
[21]
Irene Pearl, J.; Syed Ismail, T.; Irudayaraj, V.; Johnson, M. Pharmacognostical studies on anti-cancer spike moss Selaginella involvens (Sw.) Spring. Int. J. Drug Formul. Res., 2011, 2(6)
[22]
Ma, S.C.; But, P.P.; Ooi, V.E.; He, Y.H.; Lee, S.H.; Lee, S.F.; Lin, R.C. Antiviral amentoflavone from Selaginella sinensis. Biol. Pharm. Bull., 2001, 24(3), 311-312.
[http://dx.doi.org/10.1248/bpb.24.311] [PMID: 11256492]
[23]
Pandey, S.; Khan, A.A.; Shankar, K.; Singh, N. An experimental study on the anti-stress and anti-oxidant of Selaginella bryopteris. J. Biol. Chem. Res., 1999, 12, 128-129.
[24]
Rojas, A.; Bah, M.; Rojas, J.I.; Serrano, V.; Pacheco, S. Spasmolytic activity of some plants used by the Otomi Indians of Quéretaro (México) for the treatment of gastrointestinal disorders. Phytomedicine, 1999, 6(5), 367-371.
[http://dx.doi.org/10.1016/S0944-7113(99)80061-0] [PMID: 11962546]
[25]
Paswan, S. K.; Gautam, A.; Verma, P.; Rao, C.V.; Sidhu, O. P.; Singh, A. P.; Srivastava, S. The indian magical herb 'Sanjeevani' (Selaginella bryopteris L.)-A promising anti-inflammatory phytomedicine for the treatment of patients with inflammatory skin diseases. J. Pharmacopunct., 2017, 20(2), 093-099.
[26]
Swamy, R.C.; Kunert, O.; Schühly, W.; Bucar, F.; Ferreira, D.; Rani, V.S.; Kumar, B.R.; Appa Rao, A.V. Structurally unique biflavonoids from Selaginella chrysocaulos and Selaginella bryopteris. Chem. Biodivers., 2006, 3(4), 405-413.
[http://dx.doi.org/10.1002/cbdv.200690044] [PMID: 17193277]
[27]
Saldanha, B.G.; LS Oliveira, G.; CCL da Silva, J.; CP Oliveira, M.; PSCL da Silva, A.; P de Lima David, J. Neoflavonoids as prospective compounds against parasitic neglected tropical infections and human immunodeficiency virus. Curr. Bioact. Compd., 2017, 13(4), 276-291.
[http://dx.doi.org/10.2174/1573407213666170104152315]
[28]
Saxena, S.; Kaur, M.; Kapoor, N. Pharmacognostical studies on Selaginella sp. and evaluation of its microbial properties. Int. J. Adv. Tech. Eng. Sci., 2015, 3, 647-653.
[29]
Kunert, O.; Swamy, R.C.; Kaiser, M.; Presser, A.; Buzzi, S.; Rao, A.A.; Schu¨hly, W. Antiplasmodial and leishmanicidal activity of biflavonoids from Indian Selaginella bryopteris. Phytochem. Lett., 2008, 1(4), 171-174.
[http://dx.doi.org/10.1016/j.phytol.2008.09.003]
[30]
Mishra, P.K.; Raghuram, G.V.; Bhargava, A.; Ahirwar, A.; Samarth, R.; Upadhyaya, R.; Jain, S.K.; Pathak, N. In vitro and in vivo evaluation of the anticarcinogenic and cancer chemopreventive potential of a flavonoid-rich fraction from a traditional Indian herb Selaginella bryopteris. Br. J. Nutr., 2011, 106(8), 1154-1168.
[http://dx.doi.org/10.1017/S0007114511001498] [PMID: 21736819]
[31]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275(2), 496-502.
[http://dx.doi.org/10.1016/j.jcis.2004.03.003] [PMID: 15178278]
[32]
Kumar, V.; Yadav, S.K. Plant mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol., 2009, 84(2), 151-157.
[http://dx.doi.org/10.1002/jctb.2023]
[33]
Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog., 2006, 22(2), 577-583.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[34]
Sathyavathi, R.; Krishna, M.B.; Rao, S.V.; Saritha, R.; Rao, D.N. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett., 2010, 3(2), 138-143.
[http://dx.doi.org/10.1166/asl.2010.1099]
[35]
Bykkam, S.; Ahmadipour, M.; Narisngam, S.; Kalagadda, V.R.; Chidurala, S.C. Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Advances in Nanoparticles, 2015, 4(1), 1-10.
[http://dx.doi.org/10.4236/anp.2015.41001]
[36]
Alani, F.; Moo-Young, M.; Anderson, W. Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J. Microbiol. Biotechnol., 2012, 28(3), 1081-1086.
[http://dx.doi.org/10.1007/s11274-011-0906-0] [PMID: 22805829]
[37]
Awwad, A.M.; Salem, N.M.; Abdeen, A.O. Biosynthesis of silver nanoparticles using Olea europaea leaves extract and its antibacterial activity. Nanosci. Nanotech., 2012, 2(6), 164-170.
[http://dx.doi.org/10.5923/j.nn.20120206.03]
[38]
Martinez-Castanon, G.A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J.R.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res., 2008, 10(8), 1343-1348.
[http://dx.doi.org/10.1007/s11051-008-9428-6]
[39]
Mohanta, Y.K.; Behera, S.K. Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Bioprocess Biosyst. Eng., 2014, 37(11), 2263-2269.
[http://dx.doi.org/10.1007/s00449-014-1205-6] [PMID: 24842223]
[40]
Bhat, R.; Deshpande, R.; Ganachari, S.V.; Huh, D.S.; Venkataraman, A. Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom pleurotus Florida and their antibacterial activity studies. Bioinorg. Chem. Appl., 2011, 2011 650979
[http://dx.doi.org/10.1155/2011/650979] [PMID: 22190895]
[41]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1(10), 515-519.
[http://dx.doi.org/10.1021/nl0155274]
[42]
Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.K. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Res. Int., 2013, 2013 287638
[http://dx.doi.org/10.1155/2013/287638] [PMID: 23936787]
[43]
Paredes, D.; Ortiz, C.; Torres, R. Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Nanomedicine, 2014, 9, 1717-1729.
[PMID: 24729707]
[44]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[45]
Chauhan, R.; Kumar, A.; Abraham, J. A biological approach to the synthesis of silver nanoparticles with Streptomyces sp. JAR1 and its antimicrobial activity. Sci. Pharm., 2013, 81(2), 607-621.
[http://dx.doi.org/10.3797/scipharm.1302-02] [PMID: 23833724]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy