Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Potential Medicinal Applications of Vanadium and its Coordination Compounds in Current Research Prospects: A Review

Author(s): Kollur S. Prasad* and Shwetha U. Ramachandrappa

Volume 16, Issue 3, 2020

Page: [201 - 209] Pages: 9

DOI: 10.2174/1573407214666181115111357

Price: $65

Abstract

Background: The variety of biological applications of vanadium impressed researchers to develop vanadium based drugs. The most well-known fact of vanadium is that it is necessary for human beings as an insulin-enhancing agent and herein, we mainly provide an overview of vanadium-based drugs and their applications in the medicinal field for the treatment of diseases such as diabetes and cancer. The first part of this review is focused on mechanistic studies involved in the anti-diabetic activity. The latter part explains the use of vanadium and its related coordination compounds in the treatment of cancer.

Methods: This review is purely based on literature search available in the database. We focused on the reports available on the recent advancements in the vanadium chemistry and its biological properties, mainly anti-diabetic and anticancer activities of vanadium based compounds.

Results: The study of clinical trials of vanadium and its drug molecules imposed more demand due to their remarkable activity with less toxicity.

Conclusion: A brief literature survey was made pertaining to the applications of vanadium compounds/ complexes. Particularly, special attention was paid to explaining mechanistic studies of vanadium based compounds in the treatment of diabetes and cancer.

Keywords: Vanadium compounds, anti-diabetic activity, anti-cancer drugs, ammonium metavandate, sulfuric acid, smokestacks.

Graphical Abstract
[1]
Moskalyk, R.R.; Alfantazi, A.M. Processing of vanadium: A review. Miner. Eng., 2003, 16, 793-805.
[http://dx.doi.org/10.1016/S0892-6875(03)00213-9]
[2]
Jerome, O.N. Vanadium in the Environment. Part 1: Chemistry and Biochemistry; John Wiley & Sons: NY, 1998.
[3]
Jewell, S. Mineral commodity summaries 2015; U.S. Geological Survey, 2015, pp. 176-177.
[4]
John, D.K. Geoscience Encyclopedias and their potential for classroom instruction. J. Geosci. Educ., 2003, 51, 512-520.
[http://dx.doi.org/10.5408/1089-9995-51.5.512]
[5]
Donald, G.B. Dr. Donald Barceloux. Vanadium. J. Toxicol. Clin. Toxicol., 1999, 37, 265-278.
[6]
Anke, M. Vanadium - An element both essential and toxic to plants, animals and humans? Anal. Real Acad. Nac. Farm., 2004, 70, 961-999.
[7]
Badmaev, V.; Prakash, S.; Majeed, M. Vanadium: a review of its potential role in the fight against diabetes. J. Altern. Complement. Med., 1999, 5(3), 273-291.
[http://dx.doi.org/10.1089/acm.1999.5.273] [PMID: 10381252]
[8]
Nakai, M.; Watanabe, H.; Fujiwara, C.; Kakegawa, H.; Satoh, T.; Takada, J.; Matsushita, R.; Sakurai, H. Mechanism on insulin-like action of vanadyl sulfate: studies on interaction between rat adipocytes and vanadium compounds. Biol. Pharm. Bull., 1995, 18(5), 719-725.
[http://dx.doi.org/10.1248/bpb.18.719] [PMID: 7492989]
[9]
Mukherjee, B.; Patra, B.; Mahapatra, S.; Banerjee, P.; Tiwari, A.; Chatterjee, M. Vanadium--an element of atypical biological significance. Toxicol. Lett., 2004, 150(2), 135-143.
[http://dx.doi.org/10.1016/j.toxlet.2004.01.009] [PMID: 15093669]
[10]
Holko, P.; Ligeza, J.; Kisielewska, J.; Kordowiak, A.M.; Klein, A. The effect of vanadyl sulphate (VOSO4) on autocrine growth of human epithelial cancer cell lines. Pol. J. Pathol., 2008, 59(1), 3-8.
[PMID: 18655364]
[11]
Aureliano, M.; Gândara, R.M. Decavanadate effects in biological systems. J. Inorg. Biochem., 2005, 99(5), 979-985.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.02.024] [PMID: 15833319]
[12]
Lin, T.S.; Chang, C.L.; Shen, F.M. Whole blood vanadium in Taiwanese college students. Bull. Environ. Contam. Toxicol., 2004, 73(5), 781-786.
[http://dx.doi.org/10.1007/s00128-004-0495-9] [PMID: 15669719]
[13]
Hansen, T.V.; Aaseth, J.; Alexander, J. The effect of chelating agents on vanadium distribution in the rat body and on uptake by human erythrocytes. Arch. Toxicol., 1982, 50(3-4), 195-202.
[http://dx.doi.org/10.1007/BF00310851] [PMID: 6924568]
[14]
Hamel, F.G.; Duckworth, W.C. The relationship between insulin and vanadium metabolism in insulin target tissues. Mol. Cell. Biochem., 1995, 153(1-2), 95-102.
[http://dx.doi.org/10.1007/BF01075923] [PMID: 8927053]
[15]
Ramanadham, S.; Heyliger, C.; Gresser, M.J.; Tracey, A.S.; McNeill, J.H. The distribution and half-life for retention of vanadium in the organs of normal and diabetic rats orally fed vanadium(IV) and vanadium(V). Biol. Trace Elem. Res., 1991, 30(2), 119-124.
[http://dx.doi.org/10.1007/BF02990348] [PMID: 1723884]
[16]
Kawakami, N.; Ueki, T.; Matsuo, K.; Gekko, K.; Michibata, H. Selective metal binding by Vanabin2 from the vanadium-rich ascidian, Ascidia sydneiensis samea. Biochim. Biophys. Acta, 2006, 1760(7), 1096-1101.
[http://dx.doi.org/10.1016/j.bbagen.2006.03.013] [PMID: 16631310]
[17]
Gschwend, P.M.; Macfarlane, J.K.; Newman, K.A. Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science, 1985, 227(4690), 1033-1035.
[http://dx.doi.org/10.1126/science.227.4690.1033] [PMID: 17794227]
[18]
Gordon, W.G. The diversity of naturally occurring organobromine compounds. Chem. Soc. Rev., 1999, 28, 335-346.
[http://dx.doi.org/10.1039/a900201d]
[19]
Alison, B. Mechanistic considerations of the vanadium haloperoxidases. Coord. Chem. Rev., 1999, 187, 17-35.
[http://dx.doi.org/10.1016/S0010-8545(99)00033-8]
[20]
Everett, R.R.; Kanofsky, J.R.; Butler, A. Mechanistic investigations of the novel non-heme vanadium bromoperoxidases. Evidence for singlet oxygen production. J. Biol. Chem., 1990, 265(9), 4908-4914.
[PMID: 2318874]
[21]
Alette, G.J. Ligtenbarg; Ronald Hage; Ben L. Feringa. Catalytic oxidations by vanadium complexes. Coord. Chem. Rev., 2003, 237, 89-101.
[http://dx.doi.org/10.1016/S0010-8545(02)00308-9]
[22]
Ryuji, A.; Takeyoshi, Y.; Masunobu, M. Characterization of oxovanadium (IV)-Schiff-base complexes and those bound on resin, and their use in sulfide oxidation. Inorg. Chim. Acta, 2004, 357, 2237-2244.
[http://dx.doi.org/10.1016/j.ica.2003.12.031]
[23]
Shechter, Y. Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes, 1990, 39(1), 1-5.
[http://dx.doi.org/10.2337/diacare.39.1.1] [PMID: 2210051]
[24]
Yang, X.G.; Yang, X.D.; Yuan, L.; Wang, K.; Crans, D.C. The permeability and cytotoxicity of insulin-mimetic vanadium compounds. Pharm. Res., 2004, 21(6), 1026-1033.
[http://dx.doi.org/10.1023/B:PHAM.0000029293.89113.d5] [PMID: 15212169]
[25]
Ara, R.; Ashiq, U.; Mahroof-Tahir, M.; Maqsood, Z.T.; Khan, K.M.; Lodhi, M.A.; Choudhary, M.I. Chemistry, urease inhibition, and phytotoxic studies of binuclear vanadium(IV) complexes. Chem. Biodivers., 2007, 4(1), 58-71.
[http://dx.doi.org/10.1002/cbdv.200790007] [PMID: 17256735]
[26]
You, Z.L.; Shi, D.H.; Zhang, J.C.; Ma, Y.P.; Wang, C.; Li, K. Synthesis, structures and inhibitory activities of oxovanadium(V) complexes with Schiff bases. Inorg. Chim. Acta, 2012, 384, 54-61.
[http://dx.doi.org/10.1016/j.ica.2011.11.039]
[27]
Sheng, G.H.; Huo, Y.; Ye, Y.T.; You, Z.; Zhu, H.L. Urease inhibition of oxovanadium(V) complexes with hydrazone and hydroxamate ligands. Russ. J. Coord. Chem., 2014, 40, 664-670.
[http://dx.doi.org/10.1134/S1070328414090085]
[28]
Rehder, D. The role of vanadium in biology. Metallomics, 2015, 7(5), 730-742.
[http://dx.doi.org/10.1039/C4MT00304G] [PMID: 25608665]
[29]
Treviño, S.; Velázquez-Vázquez, D.; Sánchez-Lara, E.; Diaz-Fonseca, A.; Flores-Hernandez, J.Á.; Pérez-Benítez, A.; Brambila-Colombres, E.; González-Vergara, E. Metforminium decavanadate as a potential metallopharmaceutical drug for the treatment of Diabetes mellitus. Oxid. Med. Cell. Longev., 2016, 20166058705
[http://dx.doi.org/10.1155/2016/6058705] [PMID: 27119007]
[30]
Treviño, S.; Sánchez-Lara, E.; Sarmiento-Ortega, V.E.; Sánchez-Lombardo, I.; Flores-Hernández, J.A.; Pérez-Benítez, A.; Brambila-Colombres, E.; González-Vergara, E. Hypoglycemic, lipid-lowering and metabolic regulation activities of metforminium decavanadate (H2Metf)3 [V10O28]·8H2O using hypercaloric-induced carbohydrate and lipid deregulation in Wistar rats as biological model. J. Inorg. Biochem., 2015, 147, 85-92.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.04.002] [PMID: 25920353]
[31]
Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Sarmiento-Ortega, V.E.; Flores-Hernández, J.A.; Brambila, E.; Meléndez, F.J.; González-Vergara, E. Pharmacological and toxicological threshold of bisammonium tetrakis 4-(N,N-Dimethylamino)pyridinium decavanadate in a rat model of metabolic syndrome and insulinresistance. Bioinorg. Chem. Appl., 2018, 20182151079
[http://dx.doi.org/10.1155/2018/2151079] [PMID: 30026756]
[32]
Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; González-Vergara, E. Vanadium in biological action:Chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol Trace Elem Res.2018, 2018.
[33]
Zhang, Z.J.; Davidson, L.; Eisenbarth, G.; Weiner, H.L. Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc. Natl. Acad. Sci. USA, 1991, 88(22), 10252-10256.
[http://dx.doi.org/10.1073/pnas.88.22.10252] [PMID: 1946445]
[34]
Maurya, M.R.; Kumar, A.; Bhat, A.R.; Azam, A.; Bader, C.; Rehder, D. Dioxo- and oxovanadium(V) complexes of thiohydrazone ONS donor ligands: synthesis, characterization, reactivity, and antiamoebic activity. Inorg. Chem., 2006, 45(3), 1260-1269.
[http://dx.doi.org/10.1021/ic050811+] [PMID: 16441138]
[35]
Jan, K.; Bosiacka, I.B.; Gutowska, I.; Chlubek, D. Jan Korbecki. Biochemical and medical importance of vanadium compounds. Biochim. Biophys. Acta, 2012, 59, 195-200.
[36]
Thompson, K.H.; Orvig, C. Vanadium in diabetes: 100 years from phase 0 to phase I. J. Inorg. Biochem., 2006, 100(12), 1925-1935.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.08.016] [PMID: 17055061]
[37]
Rehder, D. The potentiality of vanadium in medicinal applications. Future Med. Chem., 2012, 4(14), 1823-1837.
[http://dx.doi.org/10.4155/fmc.12.103] [PMID: 23043479]
[38]
Schmidt, H.; Andersson, I.; Rehder, D.; Pettersson, L. A potentiometric and 51V NMR study of the aqueous H+/H2VO4-/H2O2/L-α-alanyl-L-histidine system. Chemistry, 2001, 7(1), 251-257.
[http://dx.doi.org/10.1002/1521-3765(20010105)7:1<251:AID-CHEM251>3.0.CO;2-9] [PMID: 11205017]
[39]
Natasha, H. Yeung. Insulin-mimetic vanadium IV/V complexes Inorganic Litera-ture Seminars, 2004, pp. 52-54.
[40]
Dieter, R. Biological and medicinal aspects of vanadium. Inorg. Chem. Commun., 2003, 6, 604-617.
[http://dx.doi.org/10.1016/S1387-7003(03)00050-9]
[41]
Heyliger, C.E.; Tahiliani, A.G.; McNeill, J.H. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science, 1985, 227(4693), 1474-1477.
[http://dx.doi.org/10.1126/science.3156405] [PMID: 3156405]
[42]
Pessoa, J.C.; Tomaz, I. Transport of therapeutic vanadium and ruthenium complexes by blood plasma components. Curr. Med. Chem., 2010, 17(31), 3701-3738.
[http://dx.doi.org/10.2174/092986710793213742] [PMID: 20846109]
[43]
Adachi, Y.; Yoshida, J.; Kodera, Y.; Katoh, A.; Takada, J.; Sakurai, H. Bis(allixinato)oxovanadium(IV) complex is a potent antidiabetic agent: studies on structure-activity relationship for a series of hydroxypyrone-vanadium complexes. J. Med. Chem., 2006, 49(11), 3251-3256.
[http://dx.doi.org/10.1021/jm060229a] [PMID: 16722643]
[44]
Adachi, Y.; Yoshikawa, Y.; Yoshida, J.; Kodera, Y.; Katoh, A.; Takada, J.; Sakurai, H. Improvement of diabetes, obesity and hypertension in type 2 diabetic KKAy mice by bis(allixinato)oxovanadium(IV) complex. Biochem. Biophys. Res. Commun., 2006, 345(3), 945-950.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.003] [PMID: 16707105]
[45]
Sakurai, H.; Katoh, A.; Kiss, T.; Jakusch, T.; Hattori, M. Metallo-allixinate complexes with anti-diabetic and anti-metabolic syndrome activities. Metallomics, 2010, 2(10), 670-682.
[http://dx.doi.org/10.1039/c0mt00025f] [PMID: 21072358]
[46]
Djordjevitz, C. Antitumor activity of vanadium compounds.Marcel-Decker, Metal ions in biological systems; Siegel, H; Siegel, A., Ed.; New York, 1995, pp. 595-616.
[47]
Köpf-Maier, P. Complexes of metals other than platinum as antitumour agents. Eur. J. Clin. Pharmacol., 1994, 47(1), 1-16.
[http://dx.doi.org/10.1007/BF00193472] [PMID: 7988618]
[48]
Kuo, L.Y.; Liu, A.H.; Marks, T.J. In metal ions in biological systems; Marcel Dekker; New York. , 1996. 33, pp. 53-85.
[49]
D’Cruz, O.J.; Uckun, F.M. Metvan: a novel oxovanadium(IV) complex with broad spectrum anticancer activity. Expert Opin. Investig. Drugs, 2002, 11(12), 1829-1836.
[http://dx.doi.org/10.1517/13543784.11.12.1829] [PMID: 12457442]
[50]
Evangelou, A.M. Vanadium in cancer treatment. Crit. Rev. Oncol. Hematol., 2002, 42(3), 249-265.
[http://dx.doi.org/10.1016/S1040-8428(01)00221-9] [PMID: 12050018]
[51]
Bishayee, A.; Waghray, A.; Patel, M.A.; Chatterjee, M. Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence. Cancer Lett., 2010, 294(1), 1-12.
[http://dx.doi.org/10.1016/j.canlet.2010.01.030] [PMID: 20206439]
[52]
Bishayee, A.; Oinam, S.; Basu, M.; Chatterjee, M. Vanadium chemoprevention of 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis: probable involvement of representative hepatic phase I and II xenobiotic metabolizing enzymes. Breast Cancer Res. Treat., 2000, 63(2), 133-145.
[http://dx.doi.org/10.1023/A:1006476003685] [PMID: 11097089]
[53]
Li, J.; Elberg, G.; Crans, D.C.; Shechter, Y. Evidence for the distinct vanadyl(+4)-dependent activating system for manifesting insulin-like effects. Biochemistry, 1996, 35(25), 8314-8318.
[http://dx.doi.org/10.1021/bi960209i] [PMID: 8679588]
[54]
Harding, M.M.; Mokdsi, G. Antitumour metallocenes: structure-activity studies and interactions with biomolecules. Curr. Med. Chem., 2000, 7(12), 1289-1303.
[http://dx.doi.org/10.2174/0929867003374066] [PMID: 11032972]
[55]
Jeffrey, T.H.; Brock, C.P.; Marks, T.J. Aqueous coordination chemistry of vanadocene dichloride with nucleotides and phosphoesters. Mechanistic implications for a new class of antitumor agents. J. Am. Chem. Soc., 1986, 108, 7263-7274.
[http://dx.doi.org/10.1021/ja00283a022]
[56]
Harding, M.M.; Harden, G.J.; Field, L.D.A. 31P NMR study of the interaction of the antitumor active metallocene Cp2MoCl2 with calf thymus DNA. FEBS Lett., 1993, 322(3), 291-294.
[http://dx.doi.org/10.1016/0014-5793(93)81588-Q] [PMID: 8486161]
[57]
Murray, J.H.; Harding, M.M. Organometallic anticancer agents: the effect of the central metal and halide ligands on the interaction of metallocene dihalides Cp2MX2 with nucleic acid constituents. J. Med. Chem., 1994, 37(13), 1936-1941.
[http://dx.doi.org/10.1021/jm00039a005] [PMID: 8027975]
[58]
Köpf-Maier, P.; Wagner, W.; Hesse, B.; Köpf, H. Tumor inhibition by metallocenes: activity against leukemias and detection of the systemic effect. Eur. J. Cancer, 1981, 17(6), 665-669.
[http://dx.doi.org/10.1016/0014-2964(81)90270-X] [PMID: 7308264]
[59]
Murthy, M.S.; Rao, L.N. Antitumor and toxicologic properties of the organometallic anticancer agent vanadocene dichloride. Inorg. Chim. Acta, 1988, 152, 117-124.
[http://dx.doi.org/10.1016/S0020-1693(00)83343-5]
[60]
Narla, R.K.; Chen, C.L.; Dong, Y.; Uckun, F.M. In vivo antitumor activity of bis(4,7-dimethyl-1,10-phenanthroline) sulfatooxovanadium(IV) (METVAN [VO(SO4)(Me2-Phen)2]). Clin. Cancer Res., 2001, 7(7), 2124-2133.
[PMID: 11448932]
[61]
Sakurai, H.; Tamura, H.; Okatani, K. Mechanism for a new antitumor vanadium complex: hydroxyl radical-dependent DNA cleavage by 1,10-phenanthroline-vanadyl complex in the presence of hydrogen peroxide. Biochem. Biophys. Res. Commun., 1995, 206(1), 133-137.
[http://dx.doi.org/10.1006/bbrc.1995.1019] [PMID: 7818512]
[62]
Zick, Y.; Sagi-Eisenberg, R. A combination of H2O2 and vanadate concomitantly stimulates protein tyrosine phosphorylation and polyphosphoinositide breakdown in different cell lines. Biochemistry, 1990, 29(44), 10240-10245.
[http://dx.doi.org/10.1021/bi00496a013] [PMID: 2176864]
[63]
Bergamaschi, G.; Rosti, V.; Danova, M.; Ponchio, L.; Lucotti, C.; Cazzola, M. Inhibitors of tyrosine phosphorylation induce apoptosis in human leukemic cell lines. Leukemia, 1993, 7(12), 2012-2018.
[PMID: 8255101]
[64]
Yuen, V.G.; Orvig, C.; Thompson, K.H.; McNeill, J.H. Improvement in cardiac dysfunction in streptozotocin-induced diabetic rats following chronic oral administration of bis(maltolato)oxovanadium(IV). Can. J. Physiol. Pharmacol., 1993, 71(3-4), 270-276.
[http://dx.doi.org/10.1139/y93-042] [PMID: 8402391]
[65]
Abakumova, O.Y.; Podobed, O.V.; Belayeva, N.F.; Tochilkin, A.I. Anticancer activity of oxovanadium compounds. Biomed. Chem., 2012, 6, 164-170.
[66]
Naso, L.G.; Ferrer, E.G.; Butenko, N.; Cavaco, I.; Lezama, L.; Rojo, T.; Etcheverry, S.B.; Williams, P.A. Antioxidant, DNA cleavage, and cellular effects of silibinin and a new oxovanadium(IV)/silibinin complex. J. Biol. Inorg. Chem., 2011, 16(4), 653-668.
[http://dx.doi.org/10.1007/s00775-011-0769-8] [PMID: 21399988]
[67]
Leon, I.E. Paula Diez, Etcheverry, S.B.; Fuentes, M.Deciphering the effect of an oxovanadium(IV) complex with the flavonoid chrysin (VOChrys) on intracellular cell signalling pathways in an osteosarcoma cell line. Metallomics, 2016, 8, 725-728.
[http://dx.doi.org/10.1039/C6MT00045B]
[68]
Naso, L.G.; Lezama, L.; Rojo, T.; Etcheverry, S.B.; Valcarcel, M.; Roura, M.; Salado, C.; Ferrer, E.G.; Williams, P.A. Biological evaluation of morin and its new oxovanadium(IV) complex as antioxidant and specific anti-cancer agents. Chem. Biol. Interact., 2013, 206(2), 289-301.
[http://dx.doi.org/10.1016/j.cbi.2013.10.006] [PMID: 24125835]
[69]
Uivarosi, V.; Barbuceanu, S.F.; Aldea, V.; Arama, C.C.; Badea, M.; Olar, R.; Marinescu, D. Synthesis, spectral and thermal studies of new rutin vanadyl complexes. Molecules, 2010, 15(3), 1578-1589.
[http://dx.doi.org/10.3390/molecules15031578] [PMID: 20336002]
[70]
Gambino, D. Potentiality of vanadium compounds as anti-parasitic agents. Coord. Chem. Rev., 2011, 255, 2193-2203.
[http://dx.doi.org/10.1016/j.ccr.2010.12.028]
[71]
Liu, Y.; Fu, Z.; Song, Y.; Yan, J.; Di, Z.; Han, C. Attenuation and improvement, toxicity and efficacy of vanadium derivatives. World J. Pharm. Pharm. Sci., 2016, 5, 97-111.
[72]
Shukla, R.; Barve, V.; Padhye, S.; Bhonde, R. Synthesis, structural properties and insulin-enhancing potential of bis(quercetinato)oxovanadium(IV) conjugate. Bioorg. Med. Chem. Lett., 2004, 14(19), 4961-4965.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.020] [PMID: 15341960]
[73]
Ferrer, E.G.; Salinas, M.V.; Correa, M.J.; Naso, L.; Barrio, D.A.; Etcheverry, S.B.; Lezama, L.; Rojo, T.; Williams, P.A.M. Synthesis, characterization, antitumoral and osteogenic activities of quercetin vanadyl(IV) complexes. J. Biol. Inorg. Chem., 2006, 11(6), 791-801.
[http://dx.doi.org/10.1007/s00775-006-0122-9] [PMID: 16821038]
[74]
Etcheverry, S.B.; Ferrer, E.G.; Naso, L.; Rivadeneira, J.; Salinas, V.; Williams, P.A.M. Antioxidant effects of the VO(IV) hesperidin complex and its role in cancer chemoprevention. J. Biol. Inorg. Chem., 2008, 13(3), 435-447.
[http://dx.doi.org/10.1007/s00775-007-0332-9] [PMID: 18097692]
[75]
Yang, C.S.; Landau, J.M.; Huang, M.T.; Newmark, H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr., 2001, 21, 381-406.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.381] [PMID: 11375442]
[76]
Ge, Y.; Zhang, Y.; Chen, Y.; Li, Q.; Chen, J.; Dong, Y.; Shi, W. Silibinin causes apoptosis and cell cycle arrest in some human pancreatic cancer cells. Int. J. Mol. Sci., 2011, 12(8), 4861-4871.
[http://dx.doi.org/10.3390/ijms12084861] [PMID: 21954330]
[77]
Singh, R.P.; Agarwal, R. Prostate cancer prevention by silibinin. Curr. Cancer Drug Targets, 2004, 4(1), 1-11.
[http://dx.doi.org/10.2174/1568009043481605] [PMID: 14965263]
[78]
Mokhtari, M.J.; Motamed, N.; Shokrgozar, M.A. Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biol. Int., 2008, 32(8), 888-892.
[http://dx.doi.org/10.1016/j.cellbi.2008.03.019] [PMID: 18538589]
[79]
Aureliano, M.; Ohlin, C.A. Decavanadate in vitro and in vivo effects: facts and opinions. J. Inorg. Biochem., 2014, 137, 123-130.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.05.002] [PMID: 24865633]
[80]
Aureliano, M.; Crans, D.C. Decavanadate (V10 O286-) and oxovanadates: oxometalates with many biological activities. J. Inorg. Biochem., 2009, 103(4), 536-546.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.11.010] [PMID: 19110314]
[81]
Aureliano, M. Decavanadate toxicology and pharmacological activities: V10 or V1, Both or None? Oxid. Med. Cell. Longev., 2016, 20166103457
[http://dx.doi.org/10.1155/2016/6103457] [PMID: 26904166]
[82]
Aureliano, M. The role of decavanadate in anti-tumor activity. Glob. J.Cancer Ther., 2018, 3, 12-14.
[http://dx.doi.org/10.17352/gjct.000015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy