Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Insights into the Microbial L-Asparaginases: from Production to Practical Applications

Author(s): Deepankar Sharma, Kushagri Singh, Kavita Singh and Abha Mishra*

Volume 20, Issue 5, 2019

Page: [452 - 464] Pages: 13

DOI: 10.2174/1389203720666181114111035

Price: $65

Abstract

L-asparaginase is a valuable protein therapeutic drug utilized for the treatment of leukemia and lymphomas. Administration of asparaginase leads to asparagine starvation causing inhibition of protein synthesis, growth, and proliferation of tumor cells. Besides its clinical significance, the enzyme also finds application in the food sector for mitigation of a cancer-causing agent acrylamide. The numerous applications ensue huge market demands and create a continued interest in the production of costeffective, more specific, less immunogenic and stable formulations which can cater both the clinical and food processing requirements. The current review article approaches the process parameters of submerged and solid-state fermentation strategies for the microbial production of the L-asparaginase from diverse sources, genetic engineering approaches used for the production of L-asparaginase enzyme and major applications in clinical and food sectors. The review also addresses the immunological issues associated with the L-asparaginase usage and the immobilization strategies, drug delivery systems employed to circumvent the toxicity complications are also discussed. The future prospects for microbial Lasparaginase production are discussed at the end of the review article.

Keywords: L-asparaginase, submerged and solid-state fermentation, genetic engineering approaches, immobilization, protein synthesis, tumor cells.

Graphical Abstract
[1]
Vellard, M. The enzyme as drug: application of enzymes as pharmaceuticals. Curr. Opin. Biotechnol., 2003, 14(4), 444-450.
[2]
Kidd, J.G. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum: I. course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J. Exp. Med., 1953, 98(6), 565-582.
[3]
Broome, J. Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects: I. properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma substance. J. Exp. Med., 1963, 118(1), 99-120.
[4]
Mashburn, L.T.; Wriston, Jr, J.C. Tumor inhibitory effect of L-asparaginase from Escherichia coli. Arch. Biochem. Biophys., 1964, 105(2), 450-453.
[5]
Yellin, T.O.; Wriston, Jr, J.C. Purification and properties of guinea pig serum asparaginase. Biochemistry, 1966, 5(5), 1605-1612.
[6]
Campbell, H.; Mashburn, L.; Boyse, E.; Old, L. Two L-asparaginases from Escherichia coli B. Their separation, purification, and antitumor activity. Biochemistry, 1967, 6(3), 721-730.
[7]
Wade, H.; Elsworth, R.; Herbert, D.; Keppie, J.; Sargeant, K. A new L-asparaginase with antitumour activity. Lancet, 1968, 292(7571), 776-777.
[8]
Salzer, W.; Seibel, N.; Smith, M. Erwinia asparaginase in pediatric acute lymphoblastic leukemia. Expert Opin. Biol. Ther., 2012, 12(10), 1407-1414.
[9]
Capizzi, R.L.; Bertino, J.; Skeel, R.; Creasey, W.; Zanes, R.; Olayon, C.; Peterson, R.; Handschumacher, R. L-asparaginase: Clinical, biochemical, pharmacological, and immunological studies. Ann. Intern. Med., 1971, 74(6), 893-901.
[10]
Haskell, C.; Canellos, G. l-asparaginase resistance in human leukemia—asparagine synthetase. Biochem. Pharmacol., 1969, 18(10), 2578-2580.
[11]
Kiriyama, Y.; Kubota, M.; Takimoto, T.; Kitoh, T.; Tanizawa, A.; Akiyama, Y.; Mikawa, H. Biochemical characterization of U937 cells resistant to L-asparaginase: The role of asparagine synthetase. Leukemia, 1989, 3(4), 294-297.
[12]
Stams, W.A.; den Boer, M.L.; Beverloo, H.B.; Meijerink, J.P.; Stigter, R.L.; van Wering, E.R.; Janka-Schaub, G.E.; Slater, R.; Pieters, R. Sensitivity to L-asparaginase is not associated with expression levels of asparagine synthetase in t (12; 21)+ pediatric ALL. Blood, 2003, 101(7), 2743-2747.
[13]
Broome, J. L-Asparaginase: Discovery and development as a tumor-inhibitory agent. Cancer Treat. Rep., 1981, 65, 111-114.
[14]
Iiboshi, Y.; Papst, P.J.; Hunger, S.P.; Terada, N. L-Asparaginase inhibits the rapamycin-targeted signaling pathway. Biochem. Biophys. Res. Commun., 1999, 260(2), 534-539.
[15]
Story, M.D.; Voehringer, D.W.; Stephens, L.C.; Meyn, R.E. L-asparaginase kills lymphoma cells by apoptosis. Cancer Chemother. Pharmacol., 1993, 32(2), 129-133.
[16]
Ueno, T.; Ohtawa, K.; Mitsui, K.; Kodera, Y.; Hiroto, M.; Matsushima, A.; Inada, Y.; Nishimura, H. Cell cycle arrest and apoptosis of leukemia cells induced by L-asparaginase. Leukemia, 1997, 11(11), 1858.
[17]
Avramis, V.I.; Tiwari, P.N. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int. J. Nanomedicine, 2006, 1(3), 241.
[18]
Shrivastava, A.; Khan, A.A.; Khurshid, M.; Kalam, M.A.; Jain, S.K.; Singhal, P.K. Recent developments in l-asparaginase discovery and its potential as anticancer agent. Crit. Rev. Oncol. Hematol., 2016, 100, 1-10.
[19]
Nesbit, M.; Chard, R.; Evans, A.; Karon, M.; Hammond, G.D. Evaluation of intramuscular versus intravenous administration of L-asparaginase in childhood leukemia. Am. J. Pediatr. Hematol. Oncol., 1979, 1(1), 9-13.
[20]
Panosyan, E.H.; Seibel, N.L.; Martin-Aragon, S.; Gaynon, P.S.; Avramis, I.A.; Sather, H.; Franklin, J.; Nachman, J.; Ettinger, L.J.; La, M. Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: Children’s Cancer Group Study CCG-1961. J. Pediatr. Hematol. Oncol., 2004, 26(4), 217-226.
[21]
Asselin, B.L. The three asparaginases. In: Drug resistance in leukemia and lymphoma III; Springer, 1999; pp. 621-629.
[22]
Zalewska-Szewczyk, B.; Andrzejewski, W.; Młynarski, W.; Jędrychowska-Dańska, K.; Witas, H.; Bodalski, J. The anti-asparagines antibodies correlate with L-asparagines activity and may affect clinical outcome of childhood acute lymphoblastic leukemia. Leuk. Lymphoma, 2007, 48(5), 931-936.
[23]
Alberts, S.R.; Bretscher, M.; Wiltsie, J.C.; O’neill, B.P.; Mokri, B.; Witzig, T.E. Thrombosis related to the use of L-asparaginase in adults with acute lymphoblastic leukemia: A need to consider coagulation monitoring and clotting factor replacement. Leuk. Lymphoma, 1999, 32(5-6), 489-496.
[24]
Beinart, G.; Damon, L. Thrombosis associated with l‐asparaginase therapy and low fibrinogen levels in adult acute lymphoblastic leukemia. Am. J. Hematol., 2004, 77(4), 331-335.
[25]
Nowak-Göttl, U.; Ahlke, E.; Fleischhack, G.; Schwabe, D.; Schobess, R.; Schumann, C.; Junker, R. Thromboembolic events in children with acute lymphoblastic leukemia (BFM protocols): Prednisone versus dexamethasone administration. Blood, 2003, 101(7), 2529-2533.
[26]
Knoderer, H.M.; Robarge, J.; Flockhart, D.A. Predicting asparaginase‐associated pancreatitis. Pediatr. Blood Cancer, 2007, 49(5), 634-639.
[27]
Raja, R.A.; Schmiegelow, K.; Frandsen, T.L. Aspara-ginase‐associated pancreatitis in children. Br. J. Haematol., 2012, 159(1), 18-27.
[28]
Mahajan, R.V.; Saran, S.; Kameswaran, K.; Kumar, V.; Saxena, R. Efficient production of L-asparaginase from Bacillus licheniformis with low-glutaminase activity: Optimization, scale up and acrylamide degradation studies. Bioresour. Technol., 2012, 125, 11-16.
[29]
Husain, I.; Sharma, A.; Kumar, S.; Malik, F. Purification and characterization of glutaminase free asparaginase from Pseudomonas otitidis: Induce apoptosis in human leukemia MOLT-4 cells. Biochimie, 2016, 121, 38-51.
[30]
Narta, U.; Roy, S.; Kanwar, S.S.; Azmi, W. Improved production of L-asparaginase by Bacillus brevis cultivated in the presence of oxygen-vectors. Bioresour. Technol., 2011, 102(2), 2083-2085.
[31]
Mukherjee, J.; Majumdar, S.; Scheper, T. Studies on nutritional and oxygen requirements for production of L-asparaginase by Enterobacter aerogenes. Appl. Microbiol. Biotechnol., 2000, 53(2), 180-184.
[32]
Batool, T.; Makky, E.A.; Jalal, M.; Yusoff, M.M. A comprehensive review on L-asparaginase and its applications. Appl. Biochem. Biotechnol., 2016, 178(5), 900-923.
[33]
Lubkowski, J.; Palm, G.J.; Gilliland, G.L.; Derst, C.; Röhm, K.H.; Wlodawer, A. Crystal structure and amino acid sequence of Wolinella succinogenes l‐asparaginase. Eur. J. Biochem., 1996, 241(1), 201-207.
[34]
Distasio, J.A.; Niederman, R.A.; Kafkewitz, D.; Goodman, D. Purification and characterization of L-asparaginase with anti-lymphoma activity from Vibrio succinogenes. J. Biol. Chem., 1976, 251(22), 6929-6933.
[35]
Covini, D.; Tardito, S.; Bussolati, O.R.; Chiarelli, L.V.; Pasquetto, M.; Digilio, R.; Valentini, G.; Scotti, C. Expanding targets for a metabolic therapy of cancer: L-asparaginase. Recent Patents Anticancer Drug Discov., 2012, 7(1), 4-13.
[36]
Nefelova, M.; Ignatov, S.; Chigalenchik, A.; Vinogradov, B.; Egorov, N. Biosynthesis of L-asparaginase-2 by cultures of Bacillus polymyxa var. Ross. Prikl. Biokhim. Mikrobiol., 1978, 14(4), 510-514.
[37]
Moola, Z.B.; Scawen, M.; Atkinson, T.; Nicholls, D. Erwinia chrysanthemi L-asparaginase: epitope mapping and production of antigenically modified enzymes. Biochem. J., 1994, 302(3), 921-927.
[38]
Tiwari, N.; Dua, R. Purification and preliminary characterization of L-asparaginase from Erwinia aroideae NRRL B-138. Indian J. Biochem. Biophys., 1996, 33(5), 371-376.
[39]
Stark, R.; Suleiman, M.S.; Hassan, I.; Greenman, J.; Millar, M. Amino acid utilisation and deamination of glutamine and asparagine by Helicobacter pylori. J. Med. Microbiol., 1997, 46(9), 793-800.
[40]
Pastuszak, I.; Szymona, M. Purification and properties of L-asparaginase from Mycobacterium phlei. Acta Biochim. Pol., 1976, 23(1), 37-44.
[41]
Rowly, B.; Wriston, J. L-asparaginase from Serratia marcescens. Biochem. Biophys. Res. Commun., 1967, 28, 160-171.
[42]
Manna, S.; Sinha, A.; Sadhukhan, R.; Chakrabarty, S. Purification, characterization and antitumor activity of L-asparaginase isolated from Pseudomonas stutzeri MB-405. Curr. Microbiol., 1995, 30(5), 291-298.
[43]
Rozalska, M.; Mikucki, J. Staphylococcal L-asparaginase: catabolic repression of synthesis. Acta Microbiol. Pol., 1992, 41(3-4), 145-150.
[44]
Curran, M.P.; Daniel, R.M.; Guy, G.R.; Morgan, H.W. A specific L-asparaginase from Thermus aquaticus. Arch. Biochem. Biophys., 1985, 241(2), 571-576.
[45]
Tosa, T.; Sano, R.; Yamamoto, K.; Nakamura, M.; Chibata, I. L-Asparaginase form Proteus vulgaris. Purification, crystallization, and enzymic properties. Biochemistry, 1972, 11(2), 217-222.
[46]
Kumar, S.; Dasu, V.V.; Pakshirajan, K. Purification and characterization of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Bioresour. Technol., 2011, 102(2), 2077-2082.
[47]
Singh, Y.; Gundampati, R.K.; Jagannadham, M.V.; Srivastava, S. Extracellular L-asparaginase from a protease-deficient Bacillus aryabhattai ITBHU02: purification, biochemical characterization, and evaluation of antineoplastic activity in vitro. Appl. Biochem. Biotechnol., 2013, 171(7), 1759-1774.
[48]
Mahajan, R.V.; Kumar, V.; Rajendran, V.; Saran, S.; Ghosh, P.C.; Saxena, R.K. Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: In vitro evaluation of anti-cancerous properties. PLoS One, 2014, 9(6), e99037.
[49]
Badoei-Dalfard, A. Purification and characterization of l-asparaginase from Pseudomonas aeruginosa strain SN004: Production optimization by statistical methods. Biocatal. Agric. Biotechnol., 2015, 4(3), 388-397.
[50]
Husain, I.; Sharma, A.; Kumar, S.; Malik, F. Purification and characterization of glutaminase free asparaginase from Enterobacter cloacae: in-vitro evaluation of cytotoxic potential against human myeloid leukemia HL-60 cells. PLoS One, 2016, 11(2), e0148877.
[51]
Shakambari, G.; Birendranarayan, A.K.; Lincy, M.J.A.; Rai, S.K.; Ahamed, Q.T.; Ashokkumar, B.; Saravanan, M.; Mahesh, A.; Varalakshmi, P. Hemocompatible glutaminase free L-asparaginase from marine Bacillus tequilensis PV9W with anticancer potential modulating p53 expression. RSC Advances, 2016, 6(31), 25943-25951.
[52]
Dejong, P.J. L-Asparaginase production by Streptomyces griseus. Appl. Microbiol., 1972, 23(6), 1163-1164.
[53]
Narayana, K.; Kumar, K.; Vijayalakshmi, M. L-asparaginase production by Streptomyces albidoflavus. Indian J. Microbiol., 2008, 48(3), 331-336.
[54]
Basha, N.S.; Rekha, R.; Komala, M.; Ruby, S. Production of extracellular anti-leukaemic enzyme l asparaginase from marine actinomycetes by solid state and submerged fermentation: Purification and characterisation. Trop. J. Pharm. Res., 2009, 8(4), 353-360.
[55]
Kavitha, A.; Vijayalakshmi, M. Optimization and purification of L-asparaginase produced by Streptomyces tendae TK-VL_333. Zeitschrift für Naturforschung. C, 2010, 65(7-8), 528-531.
[56]
Amena, S.; Vishalakshi, N.; Prabhakar, M.; Dayanand, A.; Lingappa, K. Production, purification and characterization of L-asparaginase from Streptomyces gulbargensis. Braz. J. Microbiol., 2010, 41(1), 173-178.
[57]
El-Naggar, N.E-A.; Deraz, S.F.; Soliman, H.M.; El-Deeb, N.M.; El-Ewasy, S.M. Purification, characterization, cytotoxicity and anticancer activities of L-asparaginase, anti-colon cancer protein, from the newly isolated alkaliphilic Streptomyces fradiae NEAE-82. Sci. Rep., 2016, 6, 32926.
[58]
Saxena, R.K.; Sinha, U. L-asparaginase and glutaminase activities in the culture filtrates of Aspergillus nidulans. Curr. Sci., 1981.
[59]
Sarquis, M.I.; Oliveira, E.M.; Santos, A.S.; Costa, G.L. Production of L-asparaginase by filamentous fungi. Mem. Inst. Oswaldo Cruz, 2004, 99(5), 489-492.
[60]
Mohapatra, B.; Bapuji, M.; Banerjee, U. Production and properties of L-asparaginase from Mucor species associated with a marine sponge (Spirastrella sp.). Cytobios, 1997, 92(370-371), 165-173.
[61]
Mishra, A. Production of L-asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation. Appl. Biochem. Biotechnol., 2006, 135(1), 33-42.
[62]
Nakahama, K.; Imada, A.; Igarasi, S.; Tubaki, K. Formation of L-asparaginase by Fusarium species. Microbiology, 1973, 75(2), 269-273.
[63]
Shrivastava, A.; Khan, A.A.; Shrivastav, A.; Jain, S.K.; Singhal, P.K. Kinetic studies of L-asparaginase from Penicillium digitatum. Prep. Biochem. Biotechnol., 2012, 42(6), 574-581.
[64]
Baskar, G.; Renganathan, S. Optimization of L‐asparaginase production by Aspergillus terreus MTCC 1782 using response surface methodology and artificial neural network‐linked genetic algorithm. Asia-Pac. J. Chem. Eng., 2012, 7(2), 212-220.
[65]
Elshafei, A.M.; Hassan, M.M.; Abd, M.; Abouzeid, E.; Mahmoud, D.A.; Elghonemy, D.H. Purification, characterization and antitumor activity of L-asparaginase from Penicillium brevicompactum 2 NRC 829 3. Br. Microbiol. Res. J., 2011, 2(3), 158-174.
[66]
Farag, A.M.; Hassan, S.W.; Beltagy, E.A.; El-Shenawy, M.A. Optimization of production of anti-tumor l-asparaginase by free and immobilized marine Aspergillus terreus. Egypt. J. Aquat. Res., 2015, 41(4), 295-302.
[67]
Dias, F.F.; Sato, H.H. Sequential optimization strategy for maximum l-asparaginase production from Aspergillus oryzae CCT 3940. Biocatal. Agric. Biotechnol., 2016, 6, 33-39.
[68]
Jones, G.E.; Mortimer, R.K. Biochemical properties of yeast L-asparaginase. Biochem. Genet., 1973, 9(2), 131-146.
[69]
Dunlop, P.C.; Roon, R.J. L-Asparaginase of Saccharomyces cerevisiae: An extracellular Enzyme. J. Bacteriol., 1975, 122(3), 1017-1024.
[70]
Kil, J-O.; Kim, G-N.; Park, I. Extraction of extracellular L-asparaginase from Candida utilis. Biosci. Biotechnol. Biochem., 1995, 59(4), 749-750.
[71]
Paul, J. Isolation and characterization of a Chlamydomonas L-asparaginase. Biochem. J., 1982, 203(1), 109-115.
[72]
Mohamed, S.A.; Elshal, M.F.; Kumosani, T.A.; Aldahlawi, A.M. Purification and characterization of asparaginase fromPhaseolus vulgaris seeds. Evid. Based Complement. Alternat. Med.,; , 2015, 2015, . Article ID 309214, 6 pages
[73]
Shanmugaprakash, M.; Jayashree, C.; Vinothkumar, V.; Senthilkumar, S.; Siddiqui, S.; Rawat, V.; Arshad, M. Biochemical characterization and antitumor activity of three phase partitioned L-asparaginase from Capsicum annuum L. Separ. Purif. Tech., 2015, 142, 258-267.
[74]
Kim, S-K.; Min, W-K.; Park, Y-C.; Seo, J-H. Application of repeated aspartate tags to improving extracellular production of Escherichia coli L-asparaginase isozyme II. Enzyme Microb. Technol., 2015, 79, 49-54.
[75]
Vidya, J.; Sajitha, S.; Ushasree, M.V.; Sindhu, R.; Binod, P.; Madhavan, A.; Pandey, A. Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: An overview. Bioresour. Technol., 2017, 245, 1775-1781.
[76]
Ferrara, M.A.; Severino, N.M.; Mansure, J.J.; Martins, A.S.; Oliveira, E.M.; Siani, A.C.; Pereira, Jr, N.; Torres, F.A.; Bon, E.P. Asparaginase production by a recombinant Pichia pastoris strain harbouring Saccharomyces cerevisiae ASP3 gene. Enzyme Microb. Technol., 2006, 39(7), 1457-1463.
[77]
Hatanaka, T.; Usuki, H.; Arima, J.; Uesugi, Y.; Yamamoto, Y.; Kumagai, Y.; Yamasato, A.; Mukaihara, T. Extracellular production and characterization of two Streptomyces L-asparaginases. Appl. Biochem. Biotechnol., 2011, 163(7), 836-844.
[78]
Huang, L.; Liu, Y.; Sun, Y.; Yan, Q.; Jiang, Z. Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Appl. Environ. Microbiol., 2014, 80(5), 1561-1569.
[79]
Ghoshoon, M.B.; Berenjian, A.; Hemmati, S.; Dabbagh, F.; Karimi, Z.; Negahdaripour, M.; Ghasemi, Y. Extracellular production of recombinant L-Asparaginase II in Escherichia coli: Medium optimization using response surface methodology. Int. J. Pept. Res. Ther., 2015, 21(4), 487-495.
[80]
Han, S.; Jung, J.; Park, W. Biochemical characterization of L-asparaginase in NaCl-tolerant Staphylococcus sp. OJ82 isolated from fermented seafood. J. Microbiol. Biotechnol., 2014, 24(8), 1096-1104.
[81]
Chityala, S.; Dasu, V.V.; Ahmad, J.; Prakasham, R.S. High yield expression of novel glutaminase free L-asparaginase II of Pectobacterium carotovorum MTCC 1428 in Bacillus subtilis WB800N. Bioprocess Biosyst. Eng., 2015, 38(11), 2271-2284.
[82]
Sajitha, S.; Vidya, J.; Binod, P.; Pandey, A. Cloning and expression of l-asparaginase from E. coli in eukaryotic expression system. Biochem. Eng. J., 2015, 102, 14-17.
[83]
Feng, Y.; Liu, S.; Jiao, Y.; Gao, H.; Wang, M.; Du, G.; Chen, J. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Appl. Microbiol. Biotechnol., 2017, 101(4), 1509-1520.
[84]
Kishore, V.; Nishita, K.; Manonmani, H. Cloning, expression and characterization of l-asparaginase from Pseudomonas fluorescens for large scale production in E. coli BL21 3 Biotech, 2015, 5 (6), 975-981.
[85]
Yano, S.; Minato, R.; Thongsanit, J.; Tachiki, T.; Wakayama, M. Overexpression of type I L-asparaginase of Bacillus subtilis in Escherichia coli, rapid purification and characterisation of recombinant type I L-asparaginase. Ann. Microbiol., 2008, 58(4), 711-716.
[86]
Oza, V.P.; Parmar, P.P.; Patel, D.H.; Subramanian, R. Cloning, expression and characterization of l-asparaginase from Withania somnifera L. for large scale production. 3 Biotech, 2011, 1 1(1), 21-26.
[87]
Kotzia, G.A.; Labrou, N.E. L-Asparaginase from Erwinia chrysanthemi 3937: Cloning, expression and characterization. J. Biotechnol., 2007, 127(4), 657-669.
[88]
El-Sharkawy, A.S.; Farag, A.M.; Embaby, A.M.; Saeed, H.; El-Shenawy, M. Cloning, expression and characterization of aeruginosa EGYII L-Asparaginase from Pseudomonas aeruginosa strain EGYII DSM 101801 in E. coli BL21 (DE3) pLysS. J. Mol. Catal., B Enzym., 2016, 132, 16-23.
[89]
Chohan, S.M.; Rashid, N. TK1656, a thermostable L-asparaginase from Thermococcus kodakaraensis, exhibiting highest ever reported enzyme activity. J. Biosci. Bioeng., 2013, 116(4), 438-443.
[90]
Zuo, S.; Xue, D.; Zhang, T.; Jiang, B.; Mu, W. Biochemical characterization of an extremely thermostable l-asparaginase from Thermococcus gammatolerans EJ3. J. Mol. Catal., B Enzym., 2014, 109, 122-129.
[91]
Vidya, J.; Vasudevan, U.M.; Soccol, C.R.; Pandey, A. Cloning, functional expression and characterization of L-asparaginase II from E. coli MTCC 739. Food Technol. Biotechnol., 2011, 49(3), 286-290.
[92]
Meena, B.; Anburajan, L.; Dheenan, P.S.; Begum, M.; Vinithkumar, N.V.; Dharani, G.; Kirubagaran, R. Novel glutaminase free l-asparaginase from Nocardiopsis alba NIOT-VKMA08: production, optimization, functional and molecular characterization. Bioprocess Biosyst. Eng., 2015, 38(2), 373-388.
[93]
Eisele, N.; Linke, D.; Bitzer, K.; Na’amnieh, S.; Nimtz, M.; Berger, R.G. The first characterized asparaginase from a basidiomycete, Flammulina velutipes. Bioresour. Technol., 2011, 102(3), 3316-3321.
[94]
Jia, M.; Xu, M.; He, B.; Rao, Z. Cloning, expression, and characterization of L-asparaginase from a newly isolated Bacillus subtilis B11–06. J. Agric. Food Chem., 2013, 61(39), 9428-9434.
[95]
Pokrovskaya, M.; Aleksandrova, S.; Pokrovsky, V.; Omeljanjuk, N.; Borisova, A.; Anisimova, N.Y.; Sokolov, N. Cloning, expression and characterization of the recombinant Yersinia pseudotuberculosis L-asparaginase. Protein Expr. Purif., 2012, 82(1), 150-154.
[96]
Pokrovskaya, M.; Pokrovskiy, V.; Aleksandrova, S.; Anisimova, N.Y.; Andrianov, R.; Treschalina, E.; Ponomarev, G.; Sokolov, N. Recombinant intracellular Rhodospirillum rubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect. Biomed. Khim., 2012, 6(2), 123-131.
[97]
Einsfeldt, K.; Baptista, I.C.; Pereira, J.C.; Costa-Amaral, I.C.; da Costa, E.S.; Ribeiro, M.C.; Land, M.G.; Alves, T.L.; Larentis, A.L.; Almeida, R.V. Recombinant L-asparaginase from Zymomonas mobilis: a potential new antileukemic agent produced in Escherichia coli. PLoS One, 2016, 11(6), e0156692.
[98]
Bansal, S.; Gnaneswari, D.; Mishra, P.; Kundu, B. Structural stability and functional analysis of L-asparaginase from Pyrococcus furiosus. Biochemistry (Mosc.), 2010, 75(3), 375-381.
[99]
Pandey, A. Solid-state fermentation. Biochem. Eng. J., 2003, 13(2-3), 81-84.
[100]
Hölker, U.; Höfer, M.; Lenz, J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol., 2004, 64(2), 175-186.
[101]
Acuña-Argüelles, M.; Gutierrez-Rojas, M.; Viniegra-González, G.; Favela-Torres, E. Production and properties of three pectinolytic activities produced byAspergillus niger in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol., 1995, 43(5), 808-814.
[102]
Hölker, U.; Lenz, J. Solid-state fermentation—are there any biotechnological advantages? Curr. Opin. Microbiol., 2005, 8(3), 301-306.
[103]
Doriya, K.; Jose, N.; Gowda, M.; Kumar, D. Solid-state fermentation vs submerged fermentation for the production of L-asparaginase. Adv. Food Nutr. Res., 2016, 78, 115-135.
[104]
El-Bessoumy, A.A.; Sarhan, M.; Mansour, J. Production, isolation, and purification of L-asparaginase from Pseudomonas aeruginosa 50071 using solid-state fermentation. BMB Rep., 2004, 37(4), 387-393.
[105]
Hymavathi, M.; Sathish, T.; Rao, C.S.; Prakasham, R. Enhancement of L-asparaginase production by isolated Bacillus circulans (MTCC 8574) using response surface methodology. Appl. Biochem. Biotechnol., 2009, 159(1), 191-198.
[106]
Hosamani, R.; Kaliwal, B. L-asparaginase an anti-tumor agent production by Fusarium equiseti using solid state fermentation. Int. J. Drug Discov., 2011, 3(2), 88-99.
[107]
Kumar, N.M.; Ramasamy, R.; Manonmani, H. Production and optimization of l-asparaginase from Cladosporium sp. using agricultural residues in solid state fermentation. Ind. Crops Prod., 2013, 43, 150-158.
[108]
Ghosh, S.; Murthy, S.; Govindasamy, S. Chandrasekaran, M. Optimization of L-asparaginase production by Serratia marcescens (NCIM 2919) under solid state fermentation using coconut oil cake. Sustain. Chem. Proc., 2013, 1(1), 9.
[109]
Meghavarnam, A.K.; Janakiraman, S. Solid state fermentation: An effective fermentation strategy for the production of L-asparaginase by Fusarium culmorum (ASP-87). Biocatal. Agric. Biotechnol., 2017, 11, 124-130.
[110]
Asselin, B.L.; Whitin, J.C.; Coppola, D.J.; Rupp, I.P.; Sallan, S.E.; Cohen, H.J. Comparative pharmacokinetic studies of three asparaginase preparations. J. Clin. Oncol., 1993, 11(9), 1780-1786.
[111]
Avramis, V.I.; Panosyan, E.H. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations. Clin. Pharmacokinet., 2005, 44(4), 367-393.
[112]
Panetta, J.; Gajjar, A.; Hijiya, N.; Hak, L.; Cheng, C.; Liu, W.; Pui, C.; Relling, M. Comparison of native E. coli and PEG asparaginase pharmacokinetics and pharmacodynamics in pediatric acute lymphoblastic leukemia. Clin. Pharmacol. Ther., 2009, 86(6), 651-658.
[113]
Holcenberg, J.S.; Teller, D.C. Physical properties of antitumor glutaminase-asparaginase from Pseudomonas 7A. J. Biol. Chem., 1976, 251(17), 5375-5380.
[114]
Panosyan, E.; Avramis, I.; Seibel, N.; Grigoryan, R.; Gaynon, P.; Sather, H.; Siegel, S.; Avramis, V. In: Glutamine (Gln) deamination by asparaginases (ASNases) in children with higher risk acute lymphoblastic leukemia (HR ALL),(CCG-1961 study), Blood, AMER SOC HEMATOLOGY 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA: , 2002. pp. 759A-760A.
[115]
Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Törnqvist, M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem., 2002, 50(17), 4998-5006.
[116]
Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Food chemistry: Acrylamide is formed in the Maillard reaction. Nature, 2002, 419(6906), 448.
[117]
Friedman, M. Chemistry, biochemistry, and safety of acrylamide. A review. J. Agric. Food Chem., 2003, 51(16), 4504-4526.
[118]
Hendriksen, H.V.; Kornbrust, B.A.; Østergaard, P.R.; Stringer, M.A. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. J. Agric. Food Chem., 2009, 57(10), 4168-4176.
[119]
Zyzak, D.V.; Sanders, R.A.; Stojanovic, M.; Tallmadge, D.H.; Eberhart, B.L.; Ewald, D.K.; Gruber, D.C.; Morsch, T.R.; Strothers, M.A.; Rizzi, G.P. Acrylamide formation mechanism in heated foods. J. Agric. Food Chem., 2003, 51(16), 4782-4787.
[120]
Organization, W.H. Compendium of food additive specifications. FAO JECFA Monographs; Joint FAO/WHO Expert Committee on Food Additives, 2006, p. 3.
[121]
Kumar, N.M.; Shimray, C.A.; Indrani, D.; Manonmani, H. Reduction of acrylamide formation in sweet bread with L-asparaginase treatment. Food Bioprocess Technol., 2014, 7(3), 741-748.
[122]
Zhang, S.; Xie, Y.; Zhang, C.; Bie, X.; Zhao, H.; Lu, F.; Lu, Z. Biochemical characterization of a novel l-asparaginase from Bacillus megaterium H-1 and its application in French fries. Food Res. Int., 2015, 77, 527-533.
[123]
Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9, 257-288.
[124]
Nishiyama, N. Nanomedicine: Nanocarriers shape up for long life. Nat. Nanotechnol., 2007, 2(4), 203.
[125]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161.
[126]
Cuenca, A.G.; Jiang, H.; Hochwald, S.N.; Delano, M.; Cance, W.G.; Grobmyer, S.R. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 2006, 107(3), 459-466.
[127]
Wang, X.; Yang, L.; Chen, Z.G.; Shin, D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin., 2008, 58(2), 97-110.
[128]
Ulu, A.; Ates, B. Immobilization of l-asparaginase on carrier materials: A comprehensive review. Bioconjug. Chem., 2017, 28(6), 1598-1610.
[129]
Graham, M.L. Pegaspargase: A review of clinical studies. Adv. Drug Deliv. Rev., 2003, 55(10), 1293-1302.
[130]
Parveen, S.; Sahoo, S.K. Nanomedicine. Clin. Pharmacokinet., 2006, 45(10), 965-988.
[131]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688.
[132]
Gaspar, M.M.; Blanco, D.; Cruz, M.E.; Alonso, M.J. Formulation of L-asparaginase-loaded poly (lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J. Control. Release, 1998, 52(1-2), 53-62.
[133]
Tabandeh, M.R.; Aminlari, M. Synthesis, physicochemical and immunological properties of oxidized inulin–l-asparaginase bioconjugate. J. Biotechnol., 2009, 141(3-4), 189-195.
[134]
Kwon, Y.M.; Chung, H.S.; Moon, C.; Yockman, J.; Park, Y.J.; Gitlin, S.D.; David, A.E.; Yang, V.C. L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J. Control. Release, 2009, 139(3), 182-189.
[135]
Zhang, Y-Q.; Wang, Y-J.; Wang, H-Y.; Zhu, L.; Zhou, Z-Z. Highly efficient processing of silk fibroin nanoparticle-l-asparaginase bioconjugates and their characterization as a drug delivery system. Soft Matter, 2011, 7(20), 9728-9736.
[136]
Ghosh, S.; Chaganti, S.R.; Prakasham, R. Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme l-asparaginase. J. Mol. Catal., B Enzym., 2012, 74(1-2), 132-137.
[137]
Bahreini, E.; Aghaiypour, K.; Abbasalipourkabir, R.; Mokarram, A.R.; Goodarzi, M.T.; Saidijam, M. Preparation and nanoencapsulation of l-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Res. Lett., 2014, 9(1), 340.
[138]
Ulu, A.; Koytepe, S.; Ates, B. Design of starch functionalized biodegradable P (MAA-co-MMA) as carrier matrix for l-asparaginase immobilization. Carbohydr. Polym., 2016, 153, 559-572.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy