Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Aryl-Aryl Bond Formation by Ullmann Reaction: From Mechanistic Aspects to Catalyst

Author(s): Jie Jiang, Liyong Du and Yuqiang Ding*

Volume 17, Issue 1, 2020

Page: [26 - 46] Pages: 21

DOI: 10.2174/1570193X15666181031111117

Price: $65

Abstract

Aryl-aryl bond formation is one of the most important tools in modern organic synthesis. Therefore, there is a high level of interest to develop green, effective reaction system to obtain biaryls. This review summarized the recent advances in the metal-catalyzed Ullmann reaction in which the aryl-aryl bond was formed directly. Furthermore, different types of catalytic mechanisms, especially the surface reaction, have been summarized to help the design of the catalyst.

Keywords: Aryl-aryl bond, biaryl skeletons, catalyst, graphene-based materials, metal-catalyzed synthesis, Ullman reaction.

Graphical Abstract
[1]
Bringmann, G.; Gulder, T.; Gulder, T.A.; Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev., 2011, 111(2), 563-639.
[http://dx.doi.org/10.1021/cr100155e] [PMID: 20939606]
[2]
Aldemir, H.; Richarz, R.; Gulder, T.A. The biocatalytic repertoire of natural biaryl formation. Angew. Chem. Int. Ed. Engl., 2014, 53(32), 8286-8293.
[http://dx.doi.org/10.1002/anie.201401075] [PMID: 25045123]
[3]
Alberico, D.; Scott, M.E.; Lautens, M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev., 2007, 107(1), 174-238.
[http://dx.doi.org/10.1021/cr0509760] [PMID: 17212475]
[4]
Simonetti, M.; Cannas, D.M.; Larrosa, I. Biaryl synthesis via C–H bond activation. Advances in Organometallic Chemistry; Elsevier BV: Manchester, 2017, Vol. 67, pp. 299-399.
[5]
Ullmann, F.; Bielecki, J. Ueber Synthesen in der Biphenylreihe. Ber. Dtsch. Chem. Ges., 1901, 34(2), 2174-2185.
[http://dx.doi.org/10.1002/cber.190103402141]
[6]
Daniel, M-C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[7]
Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev., 2002, 102(5), 1359-1470.
[http://dx.doi.org/10.1021/cr000664r] [PMID: 11996540]
[8]
Xi, M.; Bent, B.E. Mechanisms of the Ullmann coupling reaction in adsorbed monolayers. J. Am. Chem. Soc., 1993, 115(16), 7426-7433.
[http://dx.doi.org/10.1021/ja00069a048]
[9]
Dhas, N.A.; Raj, C.P.; Gedanken, A. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater., 1998, 10(5), 1446-1452.
[http://dx.doi.org/10.1021/cm9708269]
[10]
Samim, M.; Kaushik, N.K.; Maitra, A. Effect of size of copper nanoparticles on its catalytic behaviour in Ullman reaction. Bull. Mater. Sci., 2007, 30(5), 535-540.
[http://dx.doi.org/10.1007/s12034-007-0083-9]
[11]
Blake, M.M.; Nanayakkara, S.U.; Claridge, S.A.; Fernández-Torres, L.C.; Sykes, E.C.H.; Weiss, P.S. Identifying reactive intermediates in the Ullmann coupling reaction by scanning tunneling microscopy and spectroscopy. J. Phys. Chem. A, 2009, 113(47), 13167-13172.
[http://dx.doi.org/10.1021/jp903590c] [PMID: 19658380]
[12]
Nguyen, M-T.; Pignedoli, C.A.; Passerone, D. An ab initio insight into the Cu(111)-mediated Ullmann reaction. Phys. Chem. Chem. Phys., 2011, 13(1), 154-160.
[http://dx.doi.org/10.1039/C0CP00759E] [PMID: 20978664]
[13]
Di Giovannantonio, M.; Tomellini, M.; Lipton-Duffin, J.; Galeotti, G.; Ebrahimi, M.; Cossaro, A.; Verdini, A.; Kharche, N.; Meunier, V.; Vasseur, G.; Fagot-Revurat, Y.; Perepichka, D.F.; Rosei, F.; Contini, G. Mechanistic picture and kinetic analysis of surface-confined Ullmann polymerization. J. Am. Chem. Soc., 2016, 138(51), 16696-16702.
[http://dx.doi.org/10.1021/jacs.6b09728] [PMID: 27958750]
[14]
Suramwar, N.V.; Thakare, S.R.; Khaty, N.T. One pot synthesis of copper nanoparticles at room temperature and its catalytic activity. Arab. J. Chem., 2016, 9, S1807-S1812.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.034]
[15]
Lewis, E.A.; Marcinkowski, M.D.; Murphy, C.J.; Liriano, M.L.; Therrien, A.J.; Pronschinske, A.; Sykes, E.C.H. Controlling selectivity in the Ullmann reaction on Cu(111). Chem. Commun. (Camb.), 2017, 53(55), 7816-7819.
[http://dx.doi.org/10.1039/C7CC02901B] [PMID: 28653058]
[16]
Yasamut, K.; Jongcharoenkamol, J.; Ruchirawat, S.; Ploypradith, P. A modified Cu(0)-Cu(I)-mediated Caryl-Caryl Ullmann coupling for the synthesis of biaryls. Tetrahedron, 2016, 72(40), 5994.
[http://dx.doi.org/10.1016/j.tet.2016.07.063]
[17]
Zhao, H.; Mao, G.; Han, H.; Song, J.; Liu, Y.; Chu, W.; Sun, Z. An effective and environment-friendly system for Cu NPs@RGO-catalyzed C-C homocoupling of aryl halides or arylboronic acids in ionic liquids under microwave irradiation. RSC Advances, 2016, 6(47), 41108-41113.
[http://dx.doi.org/10.1039/C6RA04683E]
[18]
Cohen, T.; Tirpak, J.G. Rapid, room-temperature ullman-type coupling and ammonolyses of activated aryl halides in homogeneous solutions containing copper(I) ions. Tetrahedron Lett., 1975, 16(2), 143-146.
[http://dx.doi.org/10.1016/S0040-4039(00)72492-0]
[19]
Cohen, T.; Cristea, I. Kinetics and mechanism of the copper (I)-induced homogeneous Ullmann coupling of o-bromonitrobenzene. J. Am. Chem. Soc., 1976, 98(3), 748-753.
[http://dx.doi.org/10.1021/ja00419a018]
[20]
Dong, F.; Liu, J-Q.; Wang, X-S. An efficient synthesis of biaryl diamides via Ullmann coupling reaction catalyzed by cui in the presence of Cs2CO3 and TBAB. Res. Chem. Intermed., 2018, 44(9), 5271-5283.
[http://dx.doi.org/10.1007/s11164-018-3422-0]
[21]
Wu, Q.; Wang, L. Immobilization of copper(ii) in organic-inorganic hybrid materials: A highly efficient and reusable catalyst for the classic Ullmann reaction. Synthesis, 2008, 2008(13), 2007-2012.
[http://dx.doi.org/10.1055/s-2008-1067107]
[22]
Hu, Y-L.; Li, F.; Gu, G-L.; Lu, M. Facile and efficient reductive homocoupling of benzyl and aryl halides catalyzed by ionic liquid [C12mim][CuCl2] in the presence of metallic zinc and copper. Catal. Lett., 2011, 141(3), 467-473.
[http://dx.doi.org/10.1007/s10562-010-0535-5]
[23]
Prabusankar, G.; Babu, C.N.; Rajua, G.; Sampath, N. Silver(I) and copper(II)-imidazolium carboxylates: Efficient catalysts in Ullmann coupling reactions. J. Chem. Sci., 2017, 129(5), 553-559.
[http://dx.doi.org/10.1007/s12039-017-1262-x]
[24]
Hazari, N.; Melvin, P.R.; Beromi, M.M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem, 2017, 1(3), 0025.
[http://dx.doi.org/10.1038/s41570-017-0025]
[25]
Calò, V.; Nacci, A.; Monopoli, A.; Cotugno, P. Palladium-nanoparticle-catalysed Ullmann reactions in ionic liquids with aldehydes as the reductants: scope and mechanism. Chemistry, 2009, 15(5), 1272-1279.
[http://dx.doi.org/10.1002/chem.200801621] [PMID: 19072963]
[26]
Monopoli, A.; Calò, V.; Ciminale, F.; Cotugno, P.; Angelici, C.; Cioffi, N.; Nacci, A. Glucose as a clean and renewable reductant in the pd-nanoparticle-catalyzed reductive homocoupling of bromo- and chloroarenes in water. J. Org. Chem., 2010, 75(11), 3908-3911.
[27]
Santra, S.; Ranjan, P.; Mandal, S.K.; Ghorai, P.K. Living nanocatalyst for effective synthesis of symmetrical biaryls. Inorg. Chim. Acta, 2011, 372(1), 47-52.
[http://dx.doi.org/10.1016/j.ica.2011.01.056]
[28]
Ohtaka, A.; Sakon, A.; Yasui, A.; Kawaguchi, T.; Hamasaka, G.; Uozumi, Y.; Shinagawa, T.; Shimomura, O.; Nomura, R. Catalytic specificity of linear polystyrene-stabilized Pd nanoparticles during Ullmann coupling reaction in water and the associated mechanism. J. Organomet. Chem., 2018, 854, 87-93.
[http://dx.doi.org/10.1016/j.jorganchem.2017.11.016]
[29]
Liu, Y.; Tang, D.; Cao, K.; Yu, L.; Han, J.; Xu, Q. Probing the support effect at the molecular level in the polyaniline-supported palladium nanoparticle-catalyzed Ullmann reaction of aryl iodides. J. Catal., 2018, 360, 250-260.
[http://dx.doi.org/10.1016/j.jcat.2018.01.026]
[30]
Rasouli, M.A.; Ranjbar, P.R. Reductive Ullmann coupling of aryl halides by palladium nanoparticles supported on cellulose, a recoverable heterogeneous catalyst. Z. Naturforsch., 2013, 68(8), 946-950.
[http://dx.doi.org/10.5560/znb.2013-3048]
[31]
Peral, D.; Gomez-Villarraga, F.; Sala, X.; Pons, J.; Carles, B.J.; Ros, J.; Guerrero, M.; Vendier, L.; Lecante, P.; Garcia-Anton, J.; Philippot, K. Palladium catalytic systems with hybrid pyrazole ligands in C-C coupling reactions. Nanoparticles versus molecular complexes. Catal. Sci. Technol., 2013, 3(2), 475-489.
[http://dx.doi.org/10.1039/C2CY20517C]
[32]
Dumbre, D.K.; Wakharkar, R.D.; Choudhary, V.R. Greener Ullmann-type coupling of aryl halides for preparing biaryls using reusable Pd/ZrO2 catalyst. Synth. Commun., 2010, 41(2), 164-169.
[http://dx.doi.org/10.1080/00397910903531805]
[33]
Monopoli, A.; Nacci, A.; Calò, V.; Ciminale, F.; Cotugno, P.; Mangone, A.; Giannossa, L.C.; Azzone, P.; Cioffi, N. Palladium/zirconium oxide nanocomposite as a highly recyclable catalyst for C-C coupling reactions in water. Molecules, 2010, 15(7), 4511-4525.
[http://dx.doi.org/10.3390/molecules15074511] [PMID: 20657374]
[34]
Li, J.; Xie, Y.; Jiang, H.; Chen, M. Palladium-catalyzed Ullmann-type coupling with zinc in the presence of H2O in liquid carbon dioxide. Green Chem., 2002, 4(5), 424-425.
[http://dx.doi.org/10.1039/b207096k]
[35]
Li, J-H.; Xie, Y-X.; Yin, D-L. New role of CO2 as a selective agent in palladium-catalyzed reductive Ullmann coupling with zinc in water. J. Org. Chem., 2003, 68(25), 9867-9869.
[http://dx.doi.org/10.1021/jo0349835] [PMID: 14656128]
[36]
Venkatraman, S.; Li, C-J. Carbon-carbon bond formation via palladium-catalyzed reductive coupling in air. Org. Lett., 1999, 1(7), 1133-1135.
[http://dx.doi.org/10.1021/ol9909740]
[37]
Sripathy, V.; Taisheng, H.; Chao‐Jun, L. Carbon‐carbon bond formation via palladium‐catalyzed reductive coupling of aryl halides in air and water. Adv. Synth. Catal., 2002, 344(3‐4), 399-405.
[38]
Linjun, S.; Yijun, D.; Minfeng, Z.; Xiudong, L.; Wenting, S.; Shufeng, Z.; Yueqing, L.; Xian‐Man, Z.; Chenze, Q. Ethanol‐promoted reductive homocoupling reactions of aryl halides catalyzed by palladium on carbon(Pd/C). Appl. Organomet. Chem., 2010, 24(5), 421-425.
[39]
Jiang, J-Z.; Cai, C. New role of microemulsion as reducing agent in palladium catalyzed reductive Ullmann reaction. Colloid Surfaces A, 2007, 305(1), 145-148.
[http://dx.doi.org/10.1016/j.colsurfa.2007.04.040]
[40]
Feiz, A.; Bazgir, A.; Balu, A.M.; Luque, R. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts. Sci. Rep., 2016, 6, 32719.
[http://dx.doi.org/10.1038/srep32719] [PMID: 27600989]
[41]
Weber, S.K.; Bremer, S.; Trapp, O. Integration of reaction and separation in a micro-capillary column reactor-Palladium nanoparticle catalyzed C-C bond forming reactions. Chem. Eng. Sci., 2010, 65(7), 2410-2416.
[http://dx.doi.org/10.1016/j.ces.2009.09.006]
[42]
Babak, K.; Hesam, B.; Hojatollah, V. Palladium on ionic liquid derived nanofibrillated mesoporous carbon: A recyclable catalyst for the Ullmann homocoupling reactions of aryl halides in water. ChemCatChem, 2014, 6(3), 745-748.
[http://dx.doi.org/10.1002/cctc.201300893]
[43]
Wan, Y.; Chen, J.; Zhang, D.; Li, H. Ullmann coupling reaction in aqueous conditions over the Ph-MCM-41 supported Pd catalyst. J. Mol. Catal. Chem., 2006, 258(1), 89-94.
[http://dx.doi.org/10.1016/j.molcata.2006.05.018]
[44]
Li, H.; Chen, J.; Wan, Y.; Chai, W.; Zhang, F.; Lu, Y. Aqueous medium Ullmann reaction over a novel Pd/Ph-Al-MCM-41 as a new route of clean organic synthesis. Green Chem., 2007, 9(3), 273-280.
[http://dx.doi.org/10.1039/B612370H]
[45]
Wan, Y.; Zhang, D.; Zhai, Y.; Feng, C.; Chen, J.; Li, H. Periodic mesoporous organosilicas: a type of hybrid support for water-mediated reactions. Chem. Asian J., 2007, 2(7), 875-881.
[http://dx.doi.org/10.1002/asia.200700057] [PMID: 17551914]
[46]
Wang, H.; Wan, Y. Synthesis of ordered mesoporous Pd/carbon catalyst with bimodal pores and its application in water-mediated Ullmann coupling reaction of chlorobenzene. J. Mater. Sci., 2009, 44(24), 6553-6562.
[http://dx.doi.org/10.1007/s10853-009-3612-7]
[47]
Wan, Y.; Wang, H.; Zhao, Q.; Klingstedt, M.; Terasaki, O.; Zhao, D. Ordered mesoporous Pd/silica-carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media. J. Am. Chem. Soc., 2009, 131(12), 4541-4550.
[http://dx.doi.org/10.1021/ja808481g] [PMID: 19275234]
[48]
Mosaddegh, N.; Yavari, I. Pd-poly(N-vinyl-2-pyrrolidone)/MCM-48 nanocomposite: A novel catalyst for the Ullmann reaction. Chem. Pap., 2018, 72(8), 2013-2021.
[http://dx.doi.org/10.1007/s11696-018-0421-y]
[49]
Cheng, J.; Zhang, G.; Du, J.; Tang, L.; Xu, J.; Li, J. New role of graphene oxide as active hydrogen donor in the recyclable palladium nanoparticles catalyzed ullmann reaction in environmental friendly ionic liquid/supercritical carbon dioxide system. J. Mater. Chem., 2011, 21(10), 3485-3494.
[http://dx.doi.org/10.1039/c0jm02396e]
[50]
Movahed, S.K.; Dabiri, M.; Bazgir, A. Palladium nanoparticle decorated high nitrogen-doped graphene with high catalytic activity for Suzuki-Miyaura and Ullmann-type coupling reactions in aqueous media. Appl. Catal. A Gen., 2014, 488, 265-274.
[http://dx.doi.org/10.1016/j.apcata.2014.09.045]
[51]
Varadwaj, G.B.B.; Rana, S.; Parida, K. Pd (0) nanoparticles supported organofunctionalized clay driving C-C coupling reactions under benign conditions through a Pd (0)/Pd (II) redox interplay. J. Phys. Chem. C, 2014, 118(3), 1640-1651.
[http://dx.doi.org/10.1021/jp410709n]
[52]
Wang, J.; Li, Y.; Li, P.; Song, G. Polymerized functional ionic liquid supported Pd nanoparticle catalyst for reductive homocoupling of aryl halides. Monatsh. Chem., 2013, 144(8), 1159-1163.
[http://dx.doi.org/10.1007/s00706-013-0925-7]
[53]
Durán, P.L.; Elsevier, C.J.; Gadi, R. Electroreductive palladium‐catalysed Ullmann reactions in ionic liquids: Scope and mechanism. Adv. Synth. Catal., 2006, 348(12‐13), 1705-1710.
[54]
Hennings, D.D.; Iwama, T.; Rawal, V.H. Palladium-catalyzed (Ullmann-type) homocoupling of aryl halides: A convenient and general synthesis of symmetrical biaryls via inter- and intramolecular coupling reactions. Org. Lett., 1999, 1(8), 1205-1208.
[http://dx.doi.org/10.1021/ol990872+]
[55]
He, H.S.; Zhang, C.; Ng, C.K-W.; Toy, P.H. Polystyrene-supported triphenylarsines: Useful ligands in palladium-catalyzed aryl halide homocoupling reactions and a catalyst for alkene epoxidation using hydrogen peroxide. Tetrahedron, 2005, 61(51), 12053-12057.
[http://dx.doi.org/10.1016/j.tet.2005.07.108]
[56]
Wang, L.; Lu, W. Preparation of unsymmetrical biaryls by Pd(II)-catalyzed cross-coupling of aryl iodides. Org. Lett., 2009, 11(5), 1079-1082.
[http://dx.doi.org/10.1021/ol802865c] [PMID: 19203254]
[57]
Firouzabadi, H.; Iranpoor, N.; Kazemi, F. Carbon-carbon bond formation via homocoupling reaction of substrates with a broad diversity in water using Pd(OAc)2 and agarose hydrogel as a bioorganic ligand, support and reductant. J. Mol. Catal. Chem., 2011, 348(1), 94-99.
[http://dx.doi.org/10.1016/j.molcata.2011.08.010]
[58]
Nadri, S.; Azadi, E.; Ataei, A.; Joshaghani, M.; Rafiee, E. Investigation of the catalytic activity of a Pd/biphenyl-based phosphine system in the Ullmann homocoupling of aryl bromides. J. Organomet. Chem., 2011, 696(18), 2966-2970.
[http://dx.doi.org/10.1016/j.jorganchem.2011.04.032]
[59]
Ye, H.; Lijie, L.; Wenhua, F. Facile palladium-catalyzed homocoupling of aryl halides using 1,4‐butanediol as solvent, reductant and O,O‐ligand. ChemistrySelect, 2016, 1(3), 630-634.
[http://dx.doi.org/10.1002/slct.201600181]
[60]
Babak, K.; Majid, V.; Fadavi, A.P. N‐heterocyclic carbene-Pd polymers as reusable precatalysts for cyanation and Ullmann homocoupling of aryl halides: The role of solvent in product distribution. ChemCatChem, 2015, 7(14), 2248-2254.
[http://dx.doi.org/10.1002/cctc.201500383]
[61]
Hajipour, A.R.; Kazem, K.; Ghazal, T. A comparative homocoupling reaction of aryl halides using monomeric orthopalladated complex of 4‐methoxybenzoylmethylenetri-phenylphosphorane under conventional and microwave irradiation conditions. Appl. Organomet. Chem., 2011, 25(8), 567-576.
[http://dx.doi.org/10.1002/aoc.1804]
[62]
Hajipour, A.R.; Rafiee, F. Palladium-catalyzed synthesis of symmetrical biaryls under microwave irradiation and conventional heating. Synth. Commun., 2013, 43(9), 1314-1327.
[http://dx.doi.org/10.1080/00397911.2011.632830]
[63]
Nasser, I.; Habib, F.; Yasaman, A. Carboxylate‐based, room‐temperature ionic liquids as efficient media for palladium‐catalyzed homocoupling and Sonogashira-Hagihara reactions of aryl halides. Eur. J. Org. Chem., 2012, 2012(2), 305-311.
[http://dx.doi.org/10.1002/ejoc.201100701]
[64]
Chao, C.; Cheng, C.; Chang, C. New method for the preparation of activated nickel and cobalt powders and their application in biaryl synthesis. J. Org. Chem., 1983, 48(25), 4904-4907.
[http://dx.doi.org/10.1021/jo00173a024]
[65]
Rahil, R.; Sengmany, S.; Le Gall, E.; Léonel, E. Nickel-catalyzed electrochemical reductive homocouplings of aryl and heteroaryl halides: A useful route to symmetrical biaryls. Synthesis, 2018, 50(1), 146-154.
[http://dx.doi.org/10.1055/s-0036-1589100]
[66]
Troupel, M.; Rollin, Y.; Sibille, S.; Perichon, J.; Fauvarque, J-F. Catalyse par des complexs σ-aryl-nickel de l’electroreduction en biaryles des halogenures aromatiques. J. Organomet. Chem., 1980, 202(4), 435-446.
[http://dx.doi.org/10.1016/S0022-328X(00)81872-0]
[67]
Rollin, Y.; Troupel, M.; Tuck, D.G.; Perichon, J. The coupling of organic groups by the electrochemical reduction of organic halides: Catalysis by 2,2′-bipyridinenickel complexes. J. Organomet. Chem., 1986, 303(1), 131-137.
[http://dx.doi.org/10.1016/0022-328X(86)80118-8]
[68]
Courtois, V.; Barhdadi, R.; Condon, S.; Troupel, M. Catalysis by nickel-2, 2′-dipyridylamine complexes of the electroreductive coupling of aromatic halides in ethanol. Tetrahedron Lett., 1999, 40(33), 5993-5996.
[http://dx.doi.org/10.1016/S0040-4039(99)01157-0]
[69]
Yamamoto, T. Homocoupling of aryl halides promoted by an nicl2/bpy/Mg system in DMF. Appl. Organomet. Chem., 2014, 28(8), 598-604.
[http://dx.doi.org/10.1002/aoc.3168]
[70]
Yamamoto, T. C-C coupling promoted by a NiCl2/bpy/Mg system in DMF and its application to dehalogenative polycondensation. Chem. Lett., 2012, 41(11), 1422-1424.
[http://dx.doi.org/10.1246/cl.2012.1422]
[71]
Masahiko, I.; Hiroki, O.; Koichi, S.; Nobue, N.; Masaji, O. Homocoupling of aryl halides using nickel(II) complex and zinc in the presence of Et4NI. An efficient method for the synthesis of biaryls and bipyridines. Bull. Chem. Soc. Jpn., 1990, 63(1), 80-87.
[http://dx.doi.org/10.1246/bcsj.63.80]
[72]
Huynh, H.V.; Wong, L.R.; Ng, P.S. Anagostic interactions and catalytic activities of sterically bulky benzannulated N-heterocyclic carbene complexes of nickel(II). Organometallics, 2008, 27(10), 2231-2237.
[http://dx.doi.org/10.1021/om800004j]
[73]
Leadbeater, N.E.; Resouly, S.M. The use of Ni(CO)2(PPh3)2 in aryl and pyridyl coupling reactions. Tetrahedron Lett., 1999, 40(22), 4243-4246.
[http://dx.doi.org/10.1016/S0040-4039(99)00695-4]
[74]
Yao, W.; Gong, W-J.; Li, H-X.; Li, F-L.; Gao, J.; Lang, J-P. Synthesis of DMF-protected Au NPs with different size distributions and their catalytic performance in the Ullmann homocoupling of aryl iodides. Dalton Trans., 2014, 43(42), 15752-15759.
[http://dx.doi.org/10.1039/C4DT01856G] [PMID: 25211246]
[75]
Layek, K.; Maheswaran, H.; Kantam, M.L. Ullmann coupling of aryl iodides catalyzed by gold nanoparticles stabilized on nanocrystalline magnesium oxide. Catal. Sci. Technol., 2013, 3(4), 1147-1150.
[http://dx.doi.org/10.1039/c3cy20826e]
[76]
Dabiri, M.; Shariatipour, M.; Kazemi Movahed, S.; Bashiribod, S. Water-dispersible and magnetically separable gold nanoparticles supported on a magnetite/s-graphene nanocomposite and their catalytic application in the Ullmann coupling of aryl iodides in aqueous media. RSC Advances, 2014, 4(74), 39428-39434.
[http://dx.doi.org/10.1039/C4RA04479G]
[77]
Movahed, S.K.; Fakharian, M.; Dabiri, M.; Bazgir, A. Gold nanoparticle decorated reduced graphene oxide sheets with high catalytic activity for Ullmann homocoupling. RSC Advances, 2014, 4(10), 5243-5247.
[http://dx.doi.org/10.1039/c3ra45518a]
[78]
Minoo, D.; Banifatemi, K.S.R.; Farajinia, L.N.; Sahareh, B. Synthesis of gold nanoparticles decorated on sulfonated three‐dimensional graphene nanocomposite and application as a highly efficient and recyclable heterogeneous catalyst for Ullmann homocoupling of aryl iodides and reduction of p‐nitrophenol. Appl. Organomet. Chem., 2018, 32(3)e4189
[http://dx.doi.org/10.1002/aoc.4189]
[79]
Li, G.; Liu, C.; Lei, Y.; Jin, R. Au25 nanocluster-catalyzed Ullmann-type homocoupling reaction of aryl iodides. Chem. Commun. (Camb.), 2012, 48(98), 12005-12007.
[http://dx.doi.org/10.1039/c2cc34765b] [PMID: 23128357]
[80]
Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z.; Xie, Y.; Kim, H.J.; Rosi, N.L.; Jin, R. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano, 2016, 10(8), 7998-8005.
[http://dx.doi.org/10.1021/acsnano.6b03964] [PMID: 27442235]
[81]
Chen, T.; Chen, B-T.; Bukhryakov, K.V.; Rodionov, V.O. Thiols make for better catalysts: Au nanoparticles supported on functional SBA-15 for catalysis of Ullmann-type homocouplings. Chem. Commun. (Camb.), 2017, 53(85), 11638-11641.
[http://dx.doi.org/10.1039/C7CC06146C] [PMID: 28956878]
[82]
Rostamizadeh, S.; Estiri, H.; Azad, M. Ullmann homocoupling of aryl iodides catalyzed by gold nanoparticles stabilized on magnetic mesoporous silica. J. Iranian Chem. Soc., 2017, 14(5), 1005-1010.
[http://dx.doi.org/10.1007/s13738-017-1050-z]
[83]
Abiraj, K.; Srinivasa, G.; Gowda, D.C. Novel and efficient synthesis of symmetrical functionalized biaryls using zinc and triethylammonium formate. Synlett, 2004, 2004(05), 0877-0879.
[http://dx.doi.org/10.1002/chin.200433110]
[84]
Abiraj, K.; Srinivasa, G.R.; Gowda, D.C. Facile synthesis of symmetrical functionalized biaryls from aryl halides catalyzed by commercial zinc dust using ammonium formate. Tetrahedron Lett., 2004, 45(10), 2081-2084.
[http://dx.doi.org/10.1016/j.tetlet.2004.01.076]
[85]
Ranu, B.C.; Dutta, P.; Sarkar, A. Indium promoted reductive homocoupling of alkyl and aryl halides. Tetrahedron Lett., 1998, 39(51), 9557-9558.
[http://dx.doi.org/10.1016/S0040-4039(98)02123-6]
[86]
Mukhopadhyay, S.; Rothenberg, G.; Sasson, Y. Tuning the selectivity of heterogeneous catalysts: A trimetallic approach to reductive coupling of chloroarenes in water. Adv. Synth. Catal., 2001, 343(3), 274-278.
[http://dx.doi.org/10.1002/1615-4169(20010330)343:3<274:AID-ADSC274>3.0.CO;2-P]
[87]
Dhital, R.N.; Kamonsatikul, C.; Somsook, E.; Bobuatong, K.; Ehara, M.; Karanjit, S.; Sakurai, H. Low-temperature carbon-chlorine bond activation by bimetallic gold/palladium alloy nanoclusters: an application to Ullmann coupling. J. Am. Chem. Soc., 2012, 134(50), 20250-20253.
[http://dx.doi.org/10.1021/ja309606k] [PMID: 23198971]
[88]
Wang, Z-J.; Wang, X.; Lv, J-J.; Feng, J-J.; Xu, X.; Wang, A-J.; Liang, Z. Bimetallic Au-Pd nanochain networks: Facile synthesis and promising application in biaryl synthesis. New J. Chem., 2017, 41(10), 3894-3899.
[http://dx.doi.org/10.1039/C7NJ00998D]
[89]
Xiao, Q.; Sarina, S.; Bo, A.; Jia, J.; Liu, H.; Arnold, D.P.; Huang, Y.; Wu, H.; Zhu, H. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal., 2014, 4(6), 1725-1734.
[http://dx.doi.org/10.1021/cs5000284]
[90]
Zhang, L.; Wang, A.; Miller, J.T.; Liu, X.; Yang, X.; Wang, W.; Li, L.; Huang, Y.; Mou, C-Y.; Zhang, T. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water. ACS Catal., 2014, 4(5), 1546-1553.
[http://dx.doi.org/10.1021/cs500071c]
[91]
Wang, J.; Xu, A.; Jia, M.; Bai, S.; Cheng, X.; Zhaorigetu, B. Hydrotalcite-supported Pd-Au nanocatalysts for Ullmann homocoupling reactions at low temperature. New J. Chem., 2017, 41(5), 1905-1908.
[http://dx.doi.org/10.1039/C6NJ03541H]
[92]
Karimi, B.; Barzegar, H.; Vali, H. Au-Pd bimetallic nanoparticles supported on a high nitrogen-rich ordered mesoporous carbon as an efficient catalyst for room temperature Ullmann coupling of aryl chlorides in aqueous media. Chem. Commun. (Camb.), 2018, 54(52), 7155-7158.
[http://dx.doi.org/10.1039/C8CC00475G] [PMID: 29882943]
[93]
Wu, X.; Tan, L.; Chen, D.; Meng, X.; Tang, F. Icosahedral gold-platinum alloy nanocrystals in hollow silica: A highly active and stable catalyst for Ullmann reactions. Chem. Commun. (Camb.), 2014, 50(5), 539-541.
[http://dx.doi.org/10.1039/C3CC46383D] [PMID: 24266020]
[94]
Liu, Q.; Xu, M.; Wang, Y.; Feng, R.; Yang, Z.; Zuo, S.; Qi, C.; Zeng, M. Co-immobilization of Pd and Zn nanoparticles in chitosan/silica membranes for efficient, recyclable catalysts used in ullmann reaction. Int. J. Biol. Macromol., 2017, 105(Pt 1), 575-583.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.081] [PMID: 28723346]
[95]
Mahdavi, H.; Panahi, M.K.S.; Shahalizade, T. Preparation and application of hyperbranched polymer-modified polyethersulfone membrane containing Ni-Pd-Sn-coated MWCNT for catalytic aryl halide coupling reactions. Polym. Bull., 2018, 75(12), 5677-5694.
[http://dx.doi.org/10.1007/s00289-018-2345-7]
[96]
Dumbre, D.; Choudhary, V.R.; Selvakannan, P.R. Cu-Fe layered double hydroxide derived mixed metal oxide: Environmentally benign catalyst for Ullmann coupling of aryl halides. Polyhedron, 2016, 120, 180-184.
[http://dx.doi.org/10.1016/j.poly.2016.09.052]
[97]
Narasimharao, K.; Al-Sabban, E.; Saleh, T.S.; Gallastegui, A.G.; Sanfiz, A.C.; Basahel, S.; Al-Thabaiti, S.; Alyoubi, A.; Obaid, A.; Mokhtar, M. Microwave assisted efficient protocol for the classic Ullmann homocoupling reaction using Cu-Mg-Al hydrotalcite catalysts. J. Mol. Catal. Chem., 2013, 379(1), 152-162.
[http://dx.doi.org/10.1016/j.molcata.2013.08.013]
[98]
Ahmed, N.S.; Menzel, R.; Wang, Y.; Garcia-Gallastegui, A.; Bawaked, S.M.; Obaid, A.Y.; Basahel, S.N.; Mokhtar, M. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction. J. Solid State Chem., 2017, 246, 130-137.
[http://dx.doi.org/10.1016/j.jssc.2016.11.024]
[99]
Paul, A.; Smith, M.D.; Vannucci, A.K. Photoredox-assisted reductive cross-coupling: Mechanistic insight into catalytic aryl-alkyl cross-couplings. J. Org. Chem., 2017, 82(4), 1996-2003.
[http://dx.doi.org/10.1021/acs.joc.6b02830] [PMID: 28112920]
[100]
Lewis, E.A.; Murphy, C.J.; Pronschinske, A.; Liriano, M.L.; Sykes, E.C. Nanoscale insight into C-C coupling on cobalt nanoparticles. Chem. Commun. (Camb.), 2014, 50(70), 10035-10037.
[http://dx.doi.org/10.1039/C4CC03678F] [PMID: 25051314]
[101]
Ammon, M.; Sander, T.; Maier, S. On-surface synthesis of porous carbon nanoribbons from polymer chains. J. Am. Chem. Soc., 2017, 139(37), 12976-12984.
[http://dx.doi.org/10.1021/jacs.7b04783] [PMID: 28820266]
[102]
Eichhorn, J.; Strunskus, T.; Rastgoo-Lahrood, A.; Samanta, D.; Schmittel, M.; Lackinger, M. On-surface Ullmann polymerization via intermediate organometallic networks on Ag(111). Chem. Commun. (Camb.), 2014, 50(57), 7680-7682.
[http://dx.doi.org/10.1039/C4CC02757D] [PMID: 24899567]
[103]
Pham, T.A. Tran, B.V.; Nguyen, M.T.; Stöhr, M. Chiral‐selective formation of 1d polymers based on Ullmann‐type coupling: The role of the metallic substrate. Small, 2017, 13(13)
[http://dx.doi.org/10.1002/smll.201603675.] [http://dx.doi.org/10.1002/smll.201603675] [PMID: 28121375]
[104]
Shi, K.J.; Zhang, X.; Shu, C.H.; Li, D.Y.; Wu, X.Y.; Liu, P.N. Ullmann coupling reaction of aryl chlorides on Au(111) using dosed Cu as a catalyst and the programmed growth of 2D covalent organic frameworks. Chem. Commun. (Camb.), 2016, 52(56), 8726-8729.
[http://dx.doi.org/10.1039/C6CC03137D] [PMID: 27334002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy