Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

Control Strategy of a Solid State Transformer for the Grid-side Converter

Author(s): Rahul Jaiswal*, Anshul Agarwal, Vineeta Agarwal and Badre Bossoufi

Volume 13, Issue 1, 2020

Page: [27 - 35] Pages: 9

DOI: 10.2174/2352096511666181029123631

Price: $65

Abstract

Background: This paper presents a decoupled control technique for balancing the power and voltage through grid side converter using a solid state transformer.

Methods: Decoupling control is essentially a voltage oriented control technique with the objective of eliminating cross-coupling elements. Use of this decouple technique, allows bi-directional power flow control for both active and reactive power, thereby maintaining steady state DC interference voltage.

Results: The performance of this scheme is analyzed & the results are obtained from the Matlab/Simulink model.

Conclusion: From the above analysis, it can be concluded that the decoupled control strategy can easily eliminate the cross- coupled element of a solid state transformer for the grid side converter.

Keywords: Grid side converter (GSC), solid state transformer (SST), voltage oriented control (VOC), dual active bridge (DAB), direct power control (DPC), decoupled controller (DC).

Graphical Abstract
[1]
R. Hassan, and G. Radman, "Survey on Smart Grid , IEEE Southeast Con 2010 (Southeast Con.)", Proceedings of the power electronic application conference, pp. 210-213 2010
[2]
J.L. Brooks, “Solid state transformer concept development”, Report of Naval Material Command., Civil Engineering Laboratory, Naval Construction Battalion Center: Port Hueneme, CA, 1980.
[3]
S.D. Sudhoff, Solid State Transformer.US Patent No. 5, 943,229, August 24, 1999. ,
[4]
E.R. Ronan, S.D. Sudhoff, S.F. Glover, and D.L. Galloway, "Application of power electronics to the distribution transformer In: APEC 2000", Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition New Orleans, LA, USA 2000, pp. 861-867.,
[5]
M. Kang, P.N. Enjeti, and I.J. Pitel, "Analysis and Design of Electronic Transformers for Electric Power Distribution System", IEEE Trans. Power Electron., vol. 14, no. 2, pp. 1133-1141, 1999.
[6]
X. She, X. Yu, F. Wang, and A.Q. Huang, "Design and demonstrate of a 3.6-kV 120-V/10-kVA solid-state transformer for smart grid application", IEEE Trans. Power Electron., vol. 29, no. 8, pp. 3982-3996, 2014.
[7]
X. Yu, X. She, X. Ni, and A.Q. Huang, "System integration and hierarchical power management strategy for a solid-state transformer interfaced microgrid system", IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4414-4425, 2014.
[8]
B.M. Han, N.S. Choi, and J.Y. Lee, "New bidirectional intelligent semiconductor transformer for smart grid application", IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4058-4066, 2014.
[9]
X. She, A.Q. Huang, S. Lukic, and M.E. Baran, "On integration of solid-state transformer with zonal DC microgrid", IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 975-985, 2012.
[10]
X. She, A.Q. Huang, and R. Burgos, "Review of solid-state transformer technologies and their application in power distribution systems", IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 3, pp. 186-198, 2013.
[11]
J.E. Huber, and J.W. Kolar, "Solid-state transformers: On the origins and evolution of key concepts", IEEE Ind. Electron. Mag., vol. 10, no. 3, pp. 19-28, 2016.
[12]
M. Leibl, G. Ortiz, and J.W. Kolar, "“Design and experimental analysis of a medium-frequency transformer for solid-state transformer applications”, IEEE Trans. Emerg. Sel", Topics Power Electron., vol. 5, no. 1, pp. 110-123, 2017.
[13]
K. Basu, A. Shahani, A.K. Sahoo, and N. Mohan, "A single-stage solid-state transformer for PWM AC drive with source-based commutation of leakage energy", IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1734-1746, 2015.
[14]
H. Chen, A. Prasai, and D. Divan, "Dyna-C: A minimal topology for bidirectional solid state transformers", IEEE Trans. Power Electron., vol. 32, no. 2, pp. 995-1005, 2017.
[15]
H. Chen, A. Prasai, R. Moghe, K. Chintakrinda, and D. Divan, "A 50 kVA three-phase solid state transformer based on the minimal topology: Dyna-C", IEEE Trans. Power Electron.. Vol. 31, no. 12, pp. 8216-8137, Dec. 2016.
[16]
E.R. Ronan, S.D. Sudhoff, S.F. Glover, and D.L. Galloway, "A power electronic-based distribution transformer", IEEE Trans. Power Deliv., vol. 17, no. 2, pp. 537-543, 2002.
[17]
D.G. Shah, and M.L. Crow, "Stability design criteria for distribution systems with solid-state transformers", IEEE Trans. Power Deliv., vol. 29, no. 6, pp. 2588-2595, 2014.
[18]
A.A. Milani, M.T.A. Khan, A. Chakraborty, and I. Husain, Equilibrium point analysis and power sharing methods for distribution systems driven by solid-state transformers. IEEE Trans. Power Syst., Vol. 33 no. 2, pp., 1473-1483, 2018
[19]
J.S. Lai, "Designing the next generation distribution transformers: New power electronic-based hybrid and solid-state design approaches In:", Proceedings of IASTED Power and Energy Systems Palm Spring, CA, USA, 2003, pp. 262-267.
[20]
M. Kang, P.N. Enjeti, and I.J. Pitel, "Analysis and design of electronic transformers for electric power distribution system", In: IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting New Orleans, LA, USA, USA, 1997, pp. 1689-1694.
[21]
J. Kolar, and G. Ortiz, "Solid-state transformers: Key components of future traction and smart grid systems In:", Proceedings of the International Power Electronics Conference - ECCE Asia (IPEC 2014) Hiroshima, Japan pp. 1-15, 2014.
[22]
H. Chen, and D. Divan, "Soft-switching solid-state transformer (S4T)", IEEE Trans. Power Electron., vol. 33, no. 4, pp. 2933-2947, 2018.
[23]
A.Q. Huang, Q. Zhu, L. Wang, and L. Zhang, "15 kV SiC MOSFET: An enabling technology for medium voltage solid state transformers", CPSS Transact. Power Electron. Appl., vol. 2, no. 2, pp. 118-130, 2017.
[24]
M.T.A. Khan, A.A. Milani, A. Chakrabortty, and I. Husain, "Dynamic modeling and feasibility analysis of a solid-state transformer-based power distribution system", IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 551-562, 2018.
[25]
H. Zhao, T. Zhu, D. Cheng, B. Li, J. Ding, and Y. Li, "Research on the smart modular cascaded solid state transformer interfaced to distributed photovoltaic power generation system", The 6th International Conference on Renewable Power Generation (RPG), Wuhan, China, 2017. pp. 1872-1879
[26]
A.Q. Huang, "Medium-voltage solid-state transformer: Technology for a smarter and resilient grid", IEEE Trans. Ind. Electron., vol. 10, no. 3, pp. 29-42, 2016.
[27]
Proof of the principle of the solid-state transformer and the AC/AC switch mode regulator, EPRI TR-105 067., San Jose State Univ.: San Jose, CA, 1995.
[28]
L. Heinemann, and G. Mauthe, "The universal power electronics based distribution transformer, an unified approach In:", IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230) Vancouver, BC, Canada, 2001, pp. 504-509.
[29]
B. Liu, Y. Zha, and T. Zhang, "D-Q frame predictive current control methods for inverter stage of solid state transformer", IET Power Electron., vol. 10, no. 6, pp. 687-696, 2017.
[30]
X. She, R. Burgos, G. Wang, F. Wang, and A.Q. Huang, Review of solid state transformer in the distribution system: From components to field application.In:IEEE Energy Conversion Congress and Exposition., ECCE, 2012, pp. 4077-4084.
[31]
J.W. Kolar, and J.E. Huber, "Solid-state transformer key design challenges, applicability, and future concepts , presented at the IEEE", Appl. Power Electron. Conf. Expo. Varna, Bulgaria 2016
[32]
J.E. Huber, D. Rothmund, L. Wang, and J.W. Kolar, Full-ZVS modulation for all-SiC ISOP-type isolation front end (IFE) solid-state transformer In: IEEE Energy Conversion Congress and Exposition (ECCE). Milwaukee, WI, USA, 2016, pp. 1-8.
[33]
H. Qin, and J.W. Kimball, "Solid-state transformer architecture using AC-AC dual-active-bridge converter", IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3720-3730, 2013.
[34]
Q. Zhu, L. Wang, L. Zhang, W. Yu, and A.Q. Huang, Improved medium voltage AC-DC rectifier based on 10kV SiC MOSFET for solid state transformer (SST) application In: IEEE Applied Power Electronics Conference and Exposition (APEC). Long Beach, CA, USA, 2016, pp. 2365-2369.
[35]
I. Syed, and V. Khadkikar, "Replacing the grid interface transformer in wind energy conversion system with solid-state transformer", IEEE Trans. Power Syst.. , Vol. 32, no. 3, 2017, pp. 2152-2160.
[36]
S. Madhusoodhanan, "Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters", IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3343-3360, 2015.
[37]
F. Wang, G. Wang, A. Huang, W. Yu, and X. Ni, Design and operation of A 3.6 kV high performance solid state transformer based on 13kV SiC MOSFET and JBS diode. In:IEEE Energy Conversion Congress and Exposition., ECCE: Pittsburgh, PA, USA, 2014, pp. 4553-4560.
[38]
P. Dey, M. Datta, and N. Fernando, "A coordinated control of grid connected PMSG based wind energy conversion system under grid faults In:", 3rd IEEE International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), Kaohsiung, Taiwan, 2017, pp. 597-602.
[39]
M.V. Gururaj, and N.P. Padhy, "A novel decentralized coordinated voltage control scheme for distribution system with DC microgrid", IEEE Trans. Industr. Inform., vol. 14, no. 5, pp. 1962-1973, 2018.
[40]
S.I. Ganesan, D. Pattabiraman, R.K. Govindarajan, M. Rajan, and C. Nagamani, "Control scheme for a bidirectional converter in a selfsustaining low-voltage dc nanogrid", IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6317-6326, 2015.
[41]
F. Blaabjerg, R. Teodorescu, M. Liserre, and A.V. Timbus, "Overview of control and grid synchronization for distributed power generation systems", IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398-1409, 2006.
[42]
J. Shi, W. Gou, H. Yuan, T. Zhao, and A.Q. Huang, "Research on voltage and power balance control for cascaded modular solid-state transformer", IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1154-1166, 2011.
[43]
A.R. Choudhury, S. Pati, A. Choudhury, and K.B. Mohanty, "Control of voltage & frequency of a hybrid microgrid using a FLC based bidirectional converter equipped with BESS In:", IEEE International Conference on Technologies for Smart-City Energy Security and Power (ICSESP-2018) Bhubaneswar, India 2018, pp. 1-6.
[44]
T. Zhao, G. Wang, S. Bhattacharya, and A.Q. Huang, "Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer", IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1523-1532, 2013.
[45]
H. Iman-Eini, J-L. Schanen, S. Farhangi, and J. Roudet, "A modular strategy for control and voltage balancing of cascaded H-bridge rectifiers", IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2428-2442, 2008.
[46]
J. Dannehl, C. Wessels, and F. Fuchs, "Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters", IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 380-388, 2009.
[47]
S.A. Khajehoddin, M.K. Ghartemani, P.K. Jain, and A. Bakhshai, "A control design approach for three-phase grid-connected renewable energy resources", IEEE Transact. Sustain. Energy, vol. 2, no. 4, pp. 423-432, 2011.
[48]
M.P. Kazmierkowski, and L. Malesani, "Current control techniques for three‐phase voltage‐source PWM converters: A survey", IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[49]
F. Wang, J. Duarte, and M. Hendrix, "“Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dips”, Power Electronics", IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1511-1521, 2011.
[50]
J. Mohammadi, S. Vaez-Zadeh, E. Ebrahimzadeh, and F. Blaabjerg, "Combined control method for grid-side converter of doubly fed induction generator based wind energy conversion systems", IET Renew. Power Gener., vol. 12, no. 8, pp. 943-952, 2018.
[51]
E.M. Adzic, D.P. Marcetic, V.A. Katic, and M.S. Dzic, "Grid-connected voltage source converter operation under distorted grid voltage In:", 14th International Power Electronics and Motion Control Conference (EPE/PEMC) Ohrid, Macedonia 2010, pp. T11- 44-T11-51.
[52]
M. Liang, and T.Q. Zheng, "Synchronous PI control for three-phase grid-connected photovoltaic inverter In:", Chinese Control and Decision Conference (CCDC) Xuzhou, China, 2010, pp. 2302- 2307.
[53]
M.N.N. Amin, and O.A. Mohammed, "Vector oriented control of voltage source PWM inverter as dynamic VAR compensator for wind energy conversion system connected to utility grid In: ", Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Palm Springs, CA, USA 2010, pp. 1640- 1650.
[54]
T.C.Y. Wang, and X. Yuan, "Design of multiple-reference- frame PI controller for power convertersIn: ", IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 2004, pp. 3331- 3335.
[55]
M.P. Kazmierkowski, F. Blaabjerg, and R. Krishnan, “Control in power electronics”, selected problem., Elsevier Science: USA, 2002,518p.. ISBN: 0-12-402772-5.
[56]
L. Li, H. Nian, L. Ding, and B. Zhou, "Direct power control of DFIG system without phase-locked loop under unbalanced and harmonically distorted voltage", IEEE Trans. Energ. Convers., vol. 33, no. 1, pp. 395-405, 2018.
[57]
T. Noguchi, "Direct power control of PWM Converter without power source Voltage Sensors", IEEE Trans. Ind. Appl., vol. 34, no. 3, pp. 473-479, 1998.
[58]
S. Lundberg, Lecture slides: ENM075 electric drives II., Department of Energy and Environment, Chalmers University of Technology: Göteborg, Sweden, 2009.
[59]
N.K. Jena, K.B. Mohanty, H. Pradhan, and S.K. Sanyal, "A decoupled control strategy for a grid connected direct-drive PMSG based variable speed wind turbine system , In", International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE) Shillong, India 2015

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy