Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy

Author(s): Vivek K Chaturvedi, Anshuman Singh, Vinay K. Singh and Mohan P. Singh*

Volume 20, Issue 6, 2019

Page: [416 - 429] Pages: 14

DOI: 10.2174/1389200219666180918111528

Price: $65

Abstract

Background: Nanotechnology is gaining significant attention worldwide for cancer treatment. Nanobiotechnology encourages the combination of diagnostics with therapeutics, which is a vital component of a customized way to deal with the malignancy. Nanoparticles are being used as Nanomedicine which participates in diagnosis and treatment of various diseases including cancer. The unique characteristic of Nanomedicine i.e. their high surface to volume ratio enables them to tie, absorb, and convey small biomolecule like DNA, RNA, drugs, proteins, and other molecules to targeted site and thus enhances the efficacy of therapeutic agents.

Objective: The objective of the present article is to provide an insight of several aspect of nanotechnology in cancer therapeutics such as various nanomaterials as drug vehicle, drug release strategies and role of nanotechnology in cancer therapy.

Methods: We performed an extensive search on bibliographic database for research article on nanotechnology and cancer therapeutics and further compiled the necessary information from various articles into the present article.

Results: Cancer nanotechnology confers a unique technology against cancer through early diagnosis, prevention, personalized therapy by utilizing nanoparticles and quantum dots.Nano-biotechnology plays an important role in the discovery of cancer biomarkers. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires etc. have been developed as a carrier of biomolecules that can detect cancer biomarkers. Nanoparticle assisted cancer detection and monitoring involves biomolecules like proteins, antibody fragments, DNA fragments, and RNA fragments as the base of cancer biomarkers.

Conclusion: This review highlights various approaches of cancer nanotechnology in the advancement of cancer therapy.

Keywords: Cancer nanotechnology, carbon nanotubes, siRNA, nanobiosensor, anticancer, nanocarriers.

Graphical Abstract
[1]
Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med., 2017, 6, 44.
[2]
Ye, F.; Zhao, Y.; El-Sayed, R.; Muhammed, M.; Hassan, M. Advances in nanotechnology for cancer biomarkers. Nano Today, 2018, 18, 103-123.
[3]
Akhter, S.; Ahmad, I.; Ahmad, M.Z.; Ramazani, F.; Singh, A.; Rahman, Z.; Ahmad, F.J.; Storm, G.; Kok, R.J. Nanomedicines as cancer therapeutics: Current status. Curr. Cancer Drug Targets, 2013, 13, 362-378.
[4]
Wang, J.; Sui, M.; Fan, W. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr. Drug Metab., 2010, 11, 129-141.
[5]
Verma, M.; Sheoran, P.; Chaudhury, A. Application of Nanotechnology for Cancer Treatment.InAdvances in Animal Biotechnology and its Applications; Springer: Singapore, 2018, pp. 161-178.
[6]
Bharali, D.J.; Mousa, S.A. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol. Ther., 2010, 128, 324-335.
[7]
Shapira, A.; Livney, Y.D.; Broxterman, H.J.; Assaraf, Y.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resist. Updat., 2011, 14, 150-163.
[8]
Rotomskis, R.; Streckyte, G.; Karabanovas, V. Nanoparticles in diagnostics and therapy: towards nanomedicine. Medicina (Kauna), 2006, 42, 542-558.
[9]
Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci., 2016, 83, 184-202.
[10]
Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer- gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4, 3689-3696.
[11]
Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9, 257-288.
[12]
Li, J. Nanotechnology-based platform for early diagnosis of cancer. Sci. Bull., 2015, 60, 488-490.
[13]
Gu, Z.; Yan, L.; Tian, G.; Li, S.; Chai, Z.; Zhao, Y. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mat. Res., 2013, 25, 3758-3779.
[14]
Ji, T.; Zhao, Y.; Wang, J.; Zheng, X.; Tian, Y.; Zhao, Y.; Nie, G. Tumor fibroblast specific activation of a hybrid ferritin nano-cage-based optical probe for tumor microenvironment imaging. Small, 2013, 9, 2427-2431.
[15]
Parungo, C.P.; Ohnishi, S.; Alec, M.; Laurence, R.G.; Soltesz, E.G.; Colson, Y.L.; Kang, P.M.; Mihaljevic, T.; Cohn, L.H.; Frangioni, J.V. In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann. Surg. Oncol., 2004, 11, 1085-1092.
[16]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22, 969.
[17]
Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298, 1759-1762.
[18]
Hirsch, L.R.; Stafford, R.J.; Bankson, J.; Sershen, S.R.; Rivera, B.; Price, R.; Hazle, J.D.; Halas, N.J.; West, J.L. Nanoshell- mediated near-infrared thermal therapy of tumors under magneticresonance guidance. Proc. Natl. Acad. Sci. USA, 2003, 100, 13549-13554.
[19]
Loo, C.; Lin, A.; Hirsch, L.; Lee, M.H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat., 2004, 3, 33-40.
[20]
Alper, J. Shining a Light on Cancer Research.In:NCI Alliance for Nanotecnology in Cancer; National Cancer Institute: USA, 2005, pp. 1-3.
[21]
Mottram, P.L. Past, present and future drug treatment for rheumatoid arthritis and systemic lupus erythematosus. Immunol. Cell Biol., 2003, 81, 350-353.
[22]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. J. Drug Deliv., 2004, 11, 169-183.
[23]
Purohit, R.; Singh, S. Fluorescent gold nanoclusters for efficient cancer cell targeting. Int. J. Nanomedicine, 2018, 13, 15-17.
[24]
Bangham, A.; Standish, M.; Weissmann, G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J. Mol. Biol., 1965, 13, 253-259.
[25]
Yue, X.; Dai, Z. Liposomal nanotechnology for cancer theranostics. Curr. Med. Chem., 2018, 25, 1397-1408.
[26]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975.
[27]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8, 102.
[28]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65, 36-48.
[29]
Zhang, L.; Gu, F.; Chan, J.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83, 761-769.
[30]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65, 36-48.
[31]
Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol., 2014, 2014939378
[32]
James, N.; Coker, R.; Tomlinson, D.; Harris, J.; Gompels, M.; Pinching, A.; Stewart, J. Liposomal doxorubicin (Doxil): An effective new treatment for Kaposi’s sarcoma in AIDS. J. Clin. Oncol., 1994, 6, 294-296.
[33]
Singh, S. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int. J. Nanomedicine, 2018, 13, 11-13.
[34]
Berger, J.; Smith, A.; Zorn, K.; Sukumvanich, P.; Olawaiye, A.; Kelley, J.; Krivak, T. Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era. OncoTargets Ther., 2015, 8, 593.
[35]
Chou, H.; Lin, H.; Liu, J.M. A tale of the two PEGylated liposomal doxorubicins. OncoTargets Ther., 2015, 8, 1719.
[36]
Muggia, F.M. Clinical efficacy and prospects for use of pegylated liposomal doxorubicin in the treatment of ovarian and breast cancers. Drugs, 1997, 54, 22-29.
[37]
Barenholz, Y. Doxil-the First FDA-approved Nano-Drug: From an Idea to A Product. In: Handbook of Harnessing Biomaterials in Nanomedicine: Preparation, Toxicity and Applications; Dan Peer, Ed.; Pan Standford Publishing Pte. Ltd.: Singapore,. , 2012. Chap. 12, pp. 335-398.
[38]
Bladé, J.; Sonneveld, P.; San Miguel, J.F.; Sutherland, H.J.; Hajek, R.; Nagler, A.; Spencer, A.; Robak, T.; Lantz, K.C.; Zhuang, S.H. Efficacy and safety of pegylated liposomal doxorubicin in combination with bortezomib for multiple myeloma: effects of adverse prognostic factors on outcome. Clin. Lymphoma Myeloma Leuk., 2011, 11, 44-49.
[39]
Riviere, K.; Kieler-Ferguson, H.M.; Jerger, K.; Szoka Jr, F.C. Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. J. Control. Release, 2011, 153, 288-296.
[40]
Goldberg, M.S.; Hook, S.S.; Wang, A.Z.; Bulte, J.W.; Patri, A.K.; Uckun, F.M.; Cryns, V.L.; Hanes, J.; Akin, D.; Hall, J.B. Biotargeted nanomedicines for cancer: six tenets before you begin. Nanomedicine, 2013, 8, 299-308.
[41]
Ko, A.; Tempero, M.; Shan, Y.; Su, W.; Lin, Y.; Dito, E.; Ong, A.; Wang, Y.; Yeh, C.; Chen, L. A multinational phase 2 study of nanoliposomal irinotecan sucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer. Br. J. Cancer, 2013, 109, 920.
[42]
Roy, A.; Park, S.; Cunningham, D.; Kang, Y.; Chao, Y.; Chen, L.; Rees, C.; Lim, H.; Tabernero, J.; Ramos, F. A randomized phase II study of PEP02 (MM-398), irinotecan or docetaxel as a second-line therapy in patients with locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma. Ann. Oncol., 2013, 24, 1567-1573.
[43]
Saif, M.W. MM-398 achieves primary endpoint of overall survival in phase III study in patients with gemcitabine refractory metastatic pancreatic cancer. JOP, 2014, 15, 278-279.
[44]
Kesharwani, P.; Iyer, A.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today, 2015, 20, 536-547.
[45]
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nano tubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9, 674-679.
[46]
Brennan, M.E.; Coleman, J.N.; Drury, A.; Lahr, B.; Kobayashi, T.; Blau, W.J. Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. Opt. Lett., 2003, 28, 266-268.
[47]
Kam, N.W.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nano tubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA, 2005, 102, 11600-11605.
[48]
Burlaka, A.; Lukin, S.; Prylutska, S.; Remeniak, O.; Prylutskyy, Y.; Shuba, M.; Maksimenko, S.; Ritter, U.; Scharff, P. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infra red irradiation for anticancer therapy: In vitro studies. Exp. Oncol., 2010, 32, 48-50.
[49]
Rotomskis, R.; Streckyte, G.; Karabanovas, V. Nanoparticles in diagnostics and therapy: towards nanomedicine. Medicina (Kaunas), 2006, 42, 542-558.
[50]
Elhissi, A.; Ahmed, W.; Dhanak, V.; Subramani, K. Carbon nano tubes in cancer therapy and drug delivery. J. Drug Deliv., 2012, 2012837327
[51]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3, 307-316.
[52]
Liu, K.; Sun, Y.; Zhou, R.; Zhu, H.; Wang, J.; Liu, L.; Fan, S.; Jiang, K. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology, 2009, 21045708
[53]
Lay, C.L.; Liu, H.Q.; Tan, H.R.; Liu, Y. Delivery of paclitaxel by physically loading onto poly (ethylene glycol)(PEG)-graftcarbon nanotubes for potent cancer therapeutics. Nanotechnology, 2010, 21065101
[54]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3, 307-316.
[55]
Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour tar geting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2, 47.
[56]
Gaucher, G.; Dufresne, M.H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J-C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release, 2005, 109, 169-188.
[57]
Xiao, K.; Luo, J.; Fowler, W.L.; Li, Y.; Lee, J.S.; Xing, L.; Cheng, R.H.; Wang, L.; Lam, K.S. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials, 2009, 30, 6006-6016.
[58]
Xiao, K.; Li, Y.; Luo, J.; Lee, J.S.; Xiao, W.; Gonik, A.M.; Agarwal, R.G.; Lam, K.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011, 32, 3435-3446.
[59]
Trubetskoy, V.S.; Torchilin, V.P. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv. Drug Deliv. Rev., 1995, 16, 311-320.
[60]
Lukyanov, K.A.; Fradkov, A.F.; Gurskaya, N.G.; Matz, M.V.; Labas, Y.A.; Savitsky, A.P.; Markelov, M.L.; Zaraisky, A.G.; Zhao, X.; Fang, Y. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. Biol. Chem., 2000, 275, 25879-25882.
[61]
Musacchio, T.; Vaze, O.; D’Souza, G.; Torchilin, V.P. Effective stabilization and delivery of siRNA: reversible siRNA- phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjug. Chem., 2010, 21, 1530-1536.
[62]
Gao, Z.; Lukyanov, A.N.; Singhal, A.; Torchilin, V.P. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett., 2002, 2, 979-982.
[63]
Wang, H.Z.; Wang, H.Y.; Liang, R.Q.; Ruan, K.C. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim. Biophys. Sin., 2004, 36, 681-686.
[64]
Davis, M.E.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7, 771.
[65]
Blanco, E.; Kessinger, C.W.; Sumer, B.D.; Gao, J. Multifunctional micellar nanomedicine for cancer therapy. Exp. Biol. Med., 2009, 234, 123-131.
[66]
Blanco, E.; Bey, E.A.; Khemtong, C.; Yang, S.G.; Setti-Guthi, J.; Chen, H.; Kessinger, C.W.; Carnevale, K.A.; Bornmann, W.G.; Boothman, D.A. B-Lapachone micellar nanotherapeutics for non small cell lung cancer therapy. Cancer Res., 2010, 70(10), 3896-3904.
[67]
Mu, C.F.; Balakrishnan, P.; Cui, F.D.; Yin, Y.M.; Lee, Y.B.; Choi, H-G.; Yong, C.S.; Chung, S-J.; Shim, C-K.; Kim, D-D. The effects of mixed MPEG-PLA/Pluronic® copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials, 2010, 31, 2371-2379.
[68]
Zhang, W.; Shi, Y.; Chen, Y.; Ye, J.; Sha, X.; Fang, X. Multifunctional pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials, 2011, 32, 2894-2906.
[69]
Wang, Y.; Hao, J.; Li, Y.; Zhang, Z.; Sha, X.; Han, L.; Fang, X. Poly (caprolactone)-modified pluronic P105 micelles for reversal of paclitaxcel-resistance in SKOV-3 tumors. Biomaterials, 2012, 33, 4741-4751.
[70]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev., 2012, 64, 102-115.
[71]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules, 1986, 19, 2466-2468.
[72]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: Starburst-dendritic macromolecules. Polym. J., 1985, 17, 117.
[73]
Hawker, C.J.; Frechet, J.M. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 1990, 112, 7638-7647.
[74]
Lee, C.C.; Gillies, E.R.; Fox, M.E.; Guillaudeu, S.J.; Fréchet, J.M.; Dy, E.E.; Szoka, F.C. A single dose of doxorubicinfunctionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. USA, 2006, 103, 16649-16654.
[75]
Wiener, E.C.; Konda, S.; Shadron, A.; Brechbiel, M.; Gansow, O. Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest. Radiol., 1997, 32, 748-754.
[76]
Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Myc, A.; Majoros, I.; Patri, A.K.; Thomas, T.; Mulé, J.; Baker, J.R. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res., 2002, 19, 1310-1316.
[77]
Kono, K.; Liu, M.; Fréchet, J.M. Design of dendritic macromolecules containing folate or methotrexate residues. Bioconjug. Chem., 1999, 10, 1115-1121.
[78]
Woller, E.K.; Cloninger, M.J. Mannose functionalization of a sixth generation dendrimer. Biomacromolecules, 2001, 2, 1052-1054.
[79]
Roy, R.; Baek, M.G. Glycodendrimers: Novel glycotope isosteres unmasking sugar coding. Case study with T-antigen markers from breast cancer MUC1 glycoprotein. Rev. Mol. Biotechnol., 2002, 90, 291-309.
[80]
Lagnoux, D.; Darbre, T.; Schmitz, M.L.; Reymond, J.L. Inhibition of mitosis by glycopeptide dendrimer conjugates of colchicine. Eur. J. Med. Chem., 2005, 11, 3941-3950.
[81]
Ekimov, A.I.; Onushchenko, A.A. Quantum size effect in three dimensional microscopic semiconductor crystals. JETP Lett., 1981, 34, 345-349.
[82]
Kastner, M.A. Artificial atoms. Phys. Today, 1993, 46, 24-24.
[83]
Yang, L.; Mao, H.; Cao, Z.; Wang, Y.A.; Peng, X.; Wang, X.; Sajja, H.K.; Wang, L.; Duan, H.; Ni, C. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology, 2009, 136, 1514-1525.
[84]
Soltesz, E.G.; Kim, S.; Kim, S.W.; Laurence, R.G.; Alec, M.; Parungo, C.P.; Cohn, L.H.; Bawendi, M.G.; Frangioni, J.V. Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann. Surg. Oncol., 2006, 13, 386-396.
[85]
Bostick, R.M.; Kong, K.Y.; Ahearn, T.U.; Chaudry, Q.; Cohen, V.; Wang, M.D. Detecting and quantifying biomarkers of risk for colorectal cancer using quantum dots and novel image analysis algorithms. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2006, 1, 3313-3316.
[86]
Ruan, Y.; Yu, W.; Cheng, F.; Zhang, X.; Rao, T.; Xia, Y.; Larre, S. Comparison of quantum-dots-and fluorescein-isothiocyanate-based technology for detecting prostate-specific antigen expression in human prostate cancer. IET Nanobiotechnol., 2011, 5, 47-51.
[87]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4, 435.
[88]
Wang, H.Z.; Wang, H.Y.; Liang, R.Q.; Ruan, K.C. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim. Biophys. Sin., 2004, 36, 681-686.
[89]
Chen, C.; Peng, J.; Xia, H.S.; Yang, G.F.; Wu, Q.S.; Chen, L.D.; Zeng, L.B.; Zhang, Z.L.; Pang, D.W.; Li, Y. Quantum dots based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials, 2009, 30, 2912-2918.
[90]
O’Connor, A.E.; Gallagher, W.M.; Byrne, A.T. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol., 2009, 85, 1053-1074.
[91]
Liu, Y.S.; Sun, Y.; Vernier, P.T.; Liang, C.H.; Chong, S.Y.C.; Gundersen, M.A. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J. Phys. Chem. C. Nanomater. Interfaces, 2007, 111, 2872-2878.
[92]
Kawashima, N.; Nakayama, K.; Itoh, K.; Itoh, T.; Ishikawa, M.; Biju, V. Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots. Eur. J. Org. Chem., 2010, 16, 1186-1192.
[93]
Bibby, D.C.; Talmadge, J.E.; Dalal, M.K.; Kurz, S.G.; Chytil, K.M.; Barry, S.E.; Shand, D.G.; Steiert, M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int. J. Pharm., 2005, 293, 281-290.
[94]
Pan, X.Q.; Lee, R.J. In vivo antitumor activity of folate receptor-targeted liposomal daunorubicin in a murine leukemia model. Anticancer Res., 2005, 25, 343-346.
[95]
Goren, D.; Horowitz, A.T.; Tzemach, D.; Tarshish, M.; Zalipsky, S.; Gabizon, A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res., 2000, 6, 1949-1957.
[96]
Gerasimov, O.V.; Boomer, J.A.; Qualls, M.M.; Thompson, D.H. Cytosolic drug delivery using pH-and light-sensitive liposomes. Adv. Drug Deliv. Rev., 1999, 38, 317-338.
[97]
Esmaeili, F.; Ghahremani, M.H.; Ostad, S.N.; Atyabi, F.; Seyedabadi, M.; Malekshahi, M.R.; Amini, M.; Dinarvand, R. Folate receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J. Drug Target., 2008, 16, 415-423.
[98]
Bibby, D.C.; Talmadge, J.E.; Dalal, M.K.; Kurz, S.G.; Chytil, K.M.; Barry, S.E.; Shand, D.G.; Steiert, M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int. J. Pharm., 2005, 293, 281-290.
[99]
Park, J.W.; Hong, K.; Kirpotin, D.B.; Colbern, G.; Shalaby, R.; Baselga, J.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Moore, D. Anti HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res., 2002, 8, 1172-1181.
[100]
Sahoo, S.K.; Ma, W.; Labhasetwar, V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int. J. Cancer, 2004, 112, 335-340.
[101]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17, 20.
[102]
Sledge, G.; Miller, K. Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur. J. Cancer Prev., 2003, 39, 1668-1675.
[103]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev., 2001, 53, 283-318.
[104]
Garber, K. Improved paclitaxel formulation hints at new chemotherapy approach. J. Natl. Cancer Inst., 2004, 96, 90-91.
[105]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. J. Photochem. Photobiol. B Biol, 2006, 82, 412-417.
[106]
Svaasand, L.O.; Gomer, C.J.; Morinelli, E. On the physical rationale of laser induced hyperthermia. Lasers Med. Sci., 1990, 5, 121-128.
[107]
Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 2008, 41, 1578-1586.
[108]
Zharov, V.P.; Galitovskaya, E.N.; Johnson, C.; Kelly, T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Lasers Surg. Med., 2005, 37, 219-226.
[109]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol., 2006, 82, 412-417.
[110]
Wang, Z.; Qiao, R.; Tang, N.; Lu, Z.; Wang, H.; Zhang, Z.; Xue, X.; Huang, Z.; Zhang, S.; Zhang, G.; Li, Y. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance guided focused ultrasound ablation of lung cancer. Biomaterials, 2017, 127, 25-35.
[111]
Wang, K.; Kievit, F.M.; Zhang, M. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol. Res., 2016, 114, 56-66.
[112]
Ameres, S.L.; Martinez, J.; Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell, 2007, 130, 101-112.
[113]
Bader, A.G.; Brown, D.; Stoudemire, J.; Lammers, P. Developing therapeutic microRNAs for cancer. Gene Ther., 2011, 18, 1121-1126.
[114]
Oliveira, S.; Van Rooy, I.; Kranenburg, O.; Storm, G.; Schiffelers, R.M. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int. J. Pharm., 2007, 331, 211-214.
[115]
Wang, C.E.; Stayton, P.S.; Pun, S.H.; Convertine, A.J. Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery. J. Control. Release, 2015, 219, 345-354.
[116]
Su, W.P.; Cheng, F.Y.; Shieh, D.B.; Yeh, C.S.; Su, W.C. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. Int. J. Nanomedicine, 2012, 7, 4269.
[117]
Mattheolabakis, G.; Ling, D.; Ahmad, G.; Amiji, M. Enhanced anti-tumor efficacy of lipid-modified platinum derivatives in combination with survivin silencing sirna in resistant non-small cell lung cancer. Pharm. Res., 2016, 33, 2943-2953.
[118]
Oishi, M.; Nakaogami, J.; Ishii, T.; Nagasaki, Y. Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem. Lett., 2006, 35, 1046-1047.
[119]
Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharm., 2009, 6, 659-668.
[120]
Ryu, J.H.; Koo, H.; Sun, I.C.; Yuk, S.H.; Choi, K.; Kim, K.; Kwon, I.C. Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy. Adv. Drug Deliv. Rev., 2012, 64, 1447-1458.
[121]
Wang, K.; Na, M.H.; Hoffman, A.S.; Shim, G.; Han, S.E.; Oh, Y.K.; Kwon, I.C.; Kim, I.S.; Lee, B.H. In situ dose amplification by apoptosis-targeted drug delivery. J. Control. Release, 2011, 154, 214-217.
[122]
Chen, H.; Kim, S.; Li, L.; Wang, S.; Park, K.; Cheng, J.X. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging. Proc. Natl. Acad. Sci. USA, 2008, 105, 6596-6601.
[123]
Kwon, K.C.; Jo, E.; Kwon, Y.W.; Lee, B.; Ryu, J.H.; Lee, E.J.; Kim, K.; Lee, J. Superparamagnetic gold nanoparticles synthesized on protein particle scaffolds for cancer theragnosis. Adv. Mat. Res., 2017, 291701146
[124]
Ryu, J.H.; Lee, S.; Son, S.; Kim, S.H.; Leary, J.F.; Choi, K.; Kwon, I.C. Theranostic nanoparticles for future personalized medicine. J. Control. Release, 2014, 190, 477-484.
[125]
Huh, M.S.; Lee, S.Y.; Park, S.; Lee, S.; Chung, H.; Lee, S.; Choi, Y.; Oh, Y.K.; Park, J.H.; Jeong, S.Y.; Choi, K. Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J. Control. Release, 2010, 144, 134-143.
[126]
Caldorera-Moore, M.E.; Liechty, W.B.; Peppas, N.A. Responsive theranostic systems: Integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc. Chem. Res., 2011, 44, 1061-1070.
[127]
Montero, A.J.; Adams, B.; Diaz-Montero, C.M.; Glück, S. Nab paclitaxel in the treatment of metastatic breast cancer: A comprehensive review. Expert Rev. Clin. Pharmacol., 2011, 4, 329-334.
[128]
Mamot, C.; Ritschard, R.; Wicki, A.; Stehle, G.; Dieterle, T.; Bubendorf, L.; Hilker, C.; Deuster, S.; Herrmann, R.; Rochlitz, C. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol., 2012, 13, 1234-1241.
[129]
Gad, S.C.; Sharp, K.L.; Montgomery, C.; Payne, J.D.; Goodrich, G.P. Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells). Int. J. Toxicol., 2012, 31, 584-594.
[130]
Potera, C. Houston biostartups strong in innovation: Companies ride robust economic wave that’s been washing over the state of Texas. Genet. Eng. Biotechnol. News, 2011, 31, 45-47.
[131]
Ventola, C.L. The nanomedicine revolution: Part 2: Current and future clinical applications. Pharm. Ther., 2012, 37, 582.
[132]
Egusquiaguirre, S.P.; Igartua, M.; Hernández, R.M.; Pedraz, J.L. Nanoparticle delivery systems for cancer therapy: Advances in clinical and preclinical research. Clin. Transl. Oncol., 2012, 14, 83-93.
[133]
Cheng, J.; Teply, B.A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.X.; Levy-Nissenbaum, E.; Radovic-Moreno, A.F.; Langer, R.; Farok-hzad, O.C. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28, 869-876.
[134]
O’Brien, M.E.; Wigler, N.; Inbar, M.; Rosso, R.; Grischke, E.; Santoro, A.; Catane, R.; Kieback, D.; Tomczak, P.; Ackland, S. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol., 2004, 15, 440-449.
[135]
Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464, 1067.
[136]
Friedman, R. Nano dot technology enters clinical trials. J. Natl. Cancer Inst., 2011, 103(19), 1428-1429.
[137]
Cheng, J.; Khin, K.T.; Jensen, G.S.; Liu, A.; Davis, M.E. Synthesis of linear, cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem., 2003, 14, 1007-1017.
[138]
Lazarus, D.; Kabir, S.; Eliasof, S. In: CRLX301, A Novel Tumor Targeted Taxane Nanopharmaceutical, Proceedings: AACR 103rd Annual Meeting 2012 Chicago, IL, USA, Mar 31 Apr 4 2012
[139]
Libutti, S.K.; Paciotti, G.F.; Byrnes, A.A.; Alexander, H.R.; Gannon, W.E.; Walker, M.; Seidel, G.D.; Yuldasheva, N.; Tamarkin, L. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res., 2010, 16(24), 6139-6149.
[140]
Petre, C.E.; Dittmer, D.P. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int. J. Nanomedicine, 2007, 2, 277.
[141]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res., 2010, 27, 2569-2589.
[142]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53, 12320-12364.
[143]
Jung, K.H.; Kim, K.P.; Yoon, D.H.; Hong, Y.S.; Choi, C.M.; Ahn, J.H.; Lee, D.H.; Lee, J.L.; Ryu, M.H.; Ryoo, B.Y. A phase I trial to determine the maximum tolerated dose and evaluate the safety and Pharmacokinetics (PK) of docetaxel-PNP, polymeric nanoparticle formulation of docetaxel, in subjects with advanced solid malignancies. J. Clin. Oncol., 2017, 30(15)(Suppl.)e13104
[144]
Barenholz, Y.C. Doxil®-the first FDA-approved nano-drug: lessons learned. J. Control. Release, 2012, 160, 117-134.
[145]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res., 2010, 27, 2569-2589.
[146]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65, 36-48.
[147]
Silverman, J.A.; Deitcher, S.R. Marqibo®(vincristine sulphate liposome injection) improves the pharmacokinetics and pharma-codynamics of vincristine. Cancer Chemother. Pharmacol., 2013, 71, 555-564.
[148]
Matsumura, Y.; Gotoh, M.; Muro, K.; Yamada, Y.; Shirao, K.; Shimada, Y.; Okuwa, M.; Matsumoto, S.; Miyata, Y.; Ohkura, H. Phase I and pharmacokinetic study of MCC-465, a Doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol., 2004, 15, 517-525.
[149]
Lao, J.; Madani, J.; Puértolas, T.; Álvarez, M.; Hernández, A.; Pazo-Cid, R.; Artal, Á.; Antón Torres, A. Liposomal doxorubicin in the treatment of breast cancer patients: A review. J. Drug Deliv., 2013, 2013456409
[150]
Kato, K.; Chin, K.; Yoshikawa, T.; Yamaguchi, K.; Tsuji, Y.; Esaki, T.; Sakai, K.; Kimura, M.; Hamaguchi, T.; Shimada, Y. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs, 2012, 30, 1621-1627.
[151]
Iwase, Y.; Maitani, Y. Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma. Mol. Pharm., 2010, 8, 330-337.
[152]
Dinndorf, P.A.; Gootenberg, J.; Cohen, M.H.; Keegan, P.; Pazdur, R. FDA drug approval summary: Pegaspargase (Oncaspar®) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist, 2007, 12, 991-998.
[153]
Reimer, P.; Balzer, T. Ferucarbotran (Resovist): A new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: Properties, clinical development, and applications. Eur. Radiol., 2003, 13, 1266-1276.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy