Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Synthesis and Characterization of Super Paramagnetic Iron Oxide Nanoparticles

Author(s): Debasish Aich, Pijus Kanti Samanta, Satyajit Saha and Tapanendu Kamilya*

Volume 10, Issue 2, 2020

Page: [123 - 126] Pages: 4

DOI: 10.2174/2210681208666180910110114

Price: $65

Abstract

Background: Iron oxide (γ-Fe2O3) nanoparticles have been prepared by a simplified coprecipitation method.

Methods: X-ray diffraction peaks of the prepared nanoparticles match well with the characteristic peaks of crystalline g-Fe2O3 as per JCPDS data (JCPDS Card No. 39-1346) and absorption peak at 369 nm along with band gap 2.10 eV suggesting the formation of (γ-Fe2O3) nanoparticles.

Results: The γ-Fe2O3 nanoparticles are spherical in nature with a diameter around ~10 nm.

Conclusion: The crystalline g-Fe2O3 nanoparticles exhibit excellent super-paramagnetic behavior not only at room temperature (300K) but also at a temperature as low as 100K.

Keywords: Iron oxide nanoparticles, co-precipitation, UV-vis absorption, X-ray diffraction, super-paramagnetic, drug delivery.

Graphical Abstract
[1]
Aires, A.; Ocampo, S.M.; Simões, B.M.; Rodríguez, M.J.; Cadenas, J.F.; Couleaud, P.; Spence, K.; Latorre, A.; Miranda, R.; Somoza, A.; Clarke, R.B.; Carrascosa, J.L.; Cortajarena, A.L. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology, 2016, 27 065103
[2]
Li, Z.; Li, M.; Araki, N.K.; Mitsumori, M.; Hiraoka, M.; Doi, M. Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer. Mater. Sci. Eng. C, 2010, 30, 990-996.
[3]
Li, L.; Jiang, W.; Luo, K.; Song, H.; Lan, F.; Wu, Y.; Gu, Z. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking. Theranostics, 2013, 3(8), 595-615.
[4]
Weinstein, J.S.; Varallyay, C.G.; Dosa, E.; Gahramanov, S.; Hamilton, B.; Rooney, W.D.; Muldoon, L.L.; Neuwelt, E.A. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab., 2010, 30, 15-35.
[5]
Saidur, R.; Leong, K.Y.; Mohammad, H.A. A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev., 2011, 15(3), 1646-1668.
[6]
Colla, L.; Fedele, L.; Scattolini, M.; Bobbo, S. Water-based Fe2O3 nanofluid characterization: Thermal conductivity and viscosity measurements and correlation. Adv. Mech. Eng., 2012, 674947, 8.
[7]
Sheikholeslami, M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J. Mol. Liq., 2018, 263, 472-488.
[8]
Sheikholeslami, M.; Jafaryar, M.; Li, Z. Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. J. Mol. Liq., 2018, 263, 489-500.
[9]
Sheikholeslami, M.; Shehzad, S.A.; Li, Z.; Shafee, A. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int. J. Heat Mass Transfer, 2018, 127(Part A), 614-622.
[10]
Sheikholeslami, M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J. Mol. Liq., 2018, 266, 495-503.
[11]
Sheikholeslami, M.; Li, Z.; Shafee, A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int. J. Heat Mass Transfer, 2018, 127(Part A), 665-674.
[12]
Sheikholeslami, M. Finite element method for PCM solidification in existence of CuO nanoparticles. J. Mol. Liq., 2018, 265, 347-355.
[13]
Sheikholeslami, M.; Jafaryar, M.; Saleem, S.; Li, Z.; Shafee, A.; Jiang, Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int. J. Heat Mass Transfer, 2018, 126(Part B), 156-163.
[14]
Sheikholeslami, M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J. Mol. Liq., 2018, 263, 303-315.
[15]
Sheikholeslami, M.; Shehzad, S.A.; Li, Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int. J. Heat Mass Transf., 2018, 125, 375-386.
[16]
Sheikholeslami, M.; Darzi, M.; Sadoughi, M.K. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid: An experimental procedure. Int. J. Heat Mass Transf., 2018, 122, 643-650.
[17]
Sheikholeslami, M.; Rokni, H.B. CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. J. Mol. Liq., 2018, 254, 446-462.
[18]
Sheikholeslami, M.; Rokni, H.B. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys. Fluids, 2018, 30012003
[19]
Sheikholeslami, M.; Shehzad, S.A.; Abbasi, F.M.; Li, Z. Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Computer, 2018, 338(15), 491-505.
[20]
Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W-S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 2015, 16023501
[21]
Nabiyouni, G.; Ghanbari, D. Thermal, magnetic, and optical characteristics of ABS-Fe2O3 nanocomposites. J. Appl. Polym. Sci., 2012, 125, 3268-3274.
[22]
Drbohlavova, J.; Hrdy, R.; Adam, V.; Kizek, R.; Schneeweiss, O.; Hubalek, J. Preparation and properties of various magnetic nanoparticles. Sensors, 2009, 9, 2352-2362.
[23]
Bartolome, L.; Imran, M.; Kyoung, G.; Lee, C.; Sangalang, A.; Ahnd, J.K.; Kim, D.H. Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET. Green Chem., 2014, 16, 279-286.
[24]
Kim, D.K.; Zhang, Y.; Voit, W.; Rao, K.V.; Muhammed, M. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater., 2001, 225, 30-36.
[25]
Iconaru, S.L.; Prodan, A.M.; Motelica-Heino, M.; Sizaret, S.; Predoi, D. Synthesis and characterization of polysaccharide-maghemite composite nanoparticles and their antibacterial properties. Nanoscale Res. Lett., 2012, 576, 75-76.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy