Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Recent Advances of Useful Cell Sources in the Periodontal Regeneration

Author(s): Young-Dan Cho, Kyoung-Hwa Kim, Hyun-Mo Ryoo, Yong-Moo Lee, Young Ku and Yang-Jo Seol*

Volume 14, Issue 1, 2019

Page: [3 - 8] Pages: 6

DOI: 10.2174/1574888X13666180816113456

Price: $65

Abstract

Background: Periodontitis is an inflammatory disease that can result in destruction of the tooth attachment apparatus. Therefore, periodontal tissue regeneration is currently an important focus of research in the field. Approaches using stem cells and reprogrammed cells, such as induced pluripotent stem cells (iPSCs) or trans-differentiated cells, represent the cutting edge in periodontal regeneration, and have led to many trials for their clinical application.

Objectives and Results: In this review, we consider all available stem cell sources, methods to obtain the cells, their capability to differentiate into the desired cells, and the extent of their utilization in periodontal regeneration. In addition, we introduce the new concepts of using iPSCs and transdifferentiated cells for periodontal regeneration. Finally, we discuss the promise of tissue engineering for improving cell therapy outcomes for periodontal regeneration.

Conclusions: Despite their limitations, iPSCs and trans-differentiated cells may be promising cell sources for periodontal tissue regeneration. Further collaborative investigation is required for the effective and safe application of these cells in combination with tissue engineering elements, like scaffolds and biosignals.

Keywords: Stem cells, cell reprogramming, induced pluripotent stem cells, trans-differentiation, periodontal tissue regeneration, tissue engineering.

« Previous
[1]
Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999; 4(1): 1-6.
[2]
Eke PI, Dye BA, Wei L, et al. Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012. J Periodontol 2015; 86(5): 611-22.
[3]
Greenwell H. Committee on Research S, Therapy. American academy of P. Position paper: Guidelines for periodontal therapy. J Periodontol 2001; 72(11): 1624-8.
[4]
Wang HL, Greenwell H, Fiorellini J, et al. Periodontal regeneration. J Periodontol 2005; 76(9): 1601-22.
[5]
Karring T, Nyman S, Gottlow J, Laurell L. Development of the biological concept of guided tissue regeneration--animal and human studies. Periodontol 2000 1993; 1(1): 26-35.
[6]
Brunsvold MA, Mellonig JT. Bone grafts and periodontal regeneration. Periodontol 2000 1993; 1: 80-91.
[7]
Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149-55.
[8]
Nagatomo K, Komaki M, Sekiya I, et al. Stem cell properties of human periodontal ligament cells. J Periodontal Res 2006; 41(4): 303-10.
[9]
Lin NH, Gronthos S, Bartold PM. Stem cells and periodontal regeneration. Aust Dent J 2008; 53(2): 108-21.
[10]
Cai J, Weiss ML, Rao MS. In search of “stemness”. Exp Hematol 2004; 32(7): 585-98.
[11]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[12]
Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010; 467(7313): 285-90.
[13]
Cho YD, Bae HS, Lee DS, et al. Epigenetic priming confers direct cell trans-differentiation from adipocyte to osteoblast in a transgene-free state. J Cell Physiol 2016; 231(7): 1484-94.
[14]
Cho Y, Kim B, Bae H, et al. Direct gingival fibroblast/osteoblast transdifferentiation via epigenetics. J Dent Res 2017; 96(5): 555-61.
[15]
Polimeni G, Xiropaidis AV, Wikesjo UM. Biology and principles of periodontal wound healing/regeneration. Periodontol 2000 2006; 41: 30-47.
[16]
Garnick JJ. Long junctional epithelium: Epithelial reattachment in the rat. J Periodontol 1977; 48(11): 722-9.
[17]
Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol 1982; 9(4): 290-6.
[18]
Bosshardt DD, Sculean A. Does periodontal tissue regeneration really work? Periodontol 2000 2009; 51: 208-19.
[19]
Reddy MS, Jeffcoat MK. Methods of assessing periodontal regeneration. Periodontol 2000 1999; 19: 87-103.
[20]
Park SY, Kim KH, Gwak EH, et al. Ex vivo bone morphogenetic protein 2 gene delivery using periodontal ligament stem cells for enhanced re-osseointegration in the regenerative treatment of peri-implantitis. J Biomed Mater Res A 2015; 103(1): 38-47.
[21]
Ramseier CA, Rasperini G, Batia S, Giannobile WV. Advanced reconstructive technologies for periodontal tissue repair. Periodontol 2000 2012; 59(1): 185-202.
[22]
Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-6.
[23]
Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Dent Mater 2012; 28(7): 703-21.
[24]
Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12.
[25]
Zheng Y, Liu Y, Zhang CM, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 2009; 88(3): 249-54.
[26]
Yamada Y, Ueda M, Hibi H, Nagasaka T. Translational research for injectable tissue-engineered bone regeneration using mesenchymal stem cells and platelet-rich plasma: from basic research to clinical case study. Cell Transplant 2004; 13(4): 343-55.
[27]
Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 2010; 20(12): 715-22.
[28]
Guo W, Gong K, Shi H, et al. Dental follicle cells and treated dentin matrix scaffold for tissue engineering the tooth root. Biomaterials 2012; 33(5): 1291-302.
[29]
Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C. Dental follicle stem cells and tissue engineering. J Oral Sci 2010; 52(4): 541-52.
[30]
Park JY, Jeon SH, Choung PH. Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transplant 2011; 20(2): 271-85.
[31]
Grottkau BE, Purudappa PP, Lin YF. Multilineage differentiation of dental pulp stem cells from green fluorescent protein transgenic mice. Int J Oral Sci 2010; 2(1): 21-7.
[32]
Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: Function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2015; 9(11): 1205-16.
[33]
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625-30.
[34]
Liu Y, Zheng Y, Ding G, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 2008; 26(4): 1065-73.
[35]
Huang CY, Pelaez D, Dominguez-Bendala J, Garcia-Godoy F, Cheung HS. Plasticity of stem cells derived from adult periodontal ligament. Regen Med 2009; 4(6): 809-21.
[36]
Hynes K, Menicanin D, Han J, et al. Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res 2013; 92(9): 833-9.
[37]
Graf T, Enver T. Forcing cells to change lineages. Nature 2009; 462(7273): 587-94.
[38]
Medvedev SP, Shevchenko AI, Zakian SM. Induced pluripotent stem cells: Problems and advantages when applying them in regenerative medicine. Acta Naturae 2010; 2(2): 18-28.
[39]
Duan X, Tu Q, Zhang J, et al. Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol 2011; 226(1): 150-7.
[40]
Hynes K, Menichanin D, Bright R, et al. Induced pluripotent stem cells: A new frontier for stem cells in dentistry. J Dent Res 2015; 94(11): 1508-15.
[41]
Malhotra N. Induced pluripotent stem (iPS) cells in dentistry: A review. Int J Stem Cells 2016; 9(2): 176-85.
[42]
Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 2010; 19(4): 469-80.
[43]
Tamaoki N, Takahashi K, Tanaka T, et al. Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 2010; 89(8): 773-8.
[44]
Beltrao-Braga PC, Pignatari GC, Maiorka PC, et al. Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant 2011; 20(11-12): 1707-19.
[45]
Dambrot C, van de Pas S, van Zijl L, et al. Polycistronic lentivirus induced pluripotent stem cells from skin biopsies after long term storage, blood outgrowth endothelial cells and cells from milk teeth. Differentiation 2013; 85(3): 101-9.
[46]
Egusa H, Okita K, Kayashima H, et al. Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One 2010; 5(9): e12743.
[47]
Wada N, Wang B, Lin NH, Laslett AL, Gronthos S, Bartold PM. Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res 2011; 46(4): 438-47.
[48]
Umezaki Y, Hashimoto Y, Nishishita N, Kawamata S, Baba S. Human Gingival Integration-Free iPSCs; a Source for MSC-Like Cells. Int J Mol Sci 2015; 16(6): 13633-48.
[49]
Oda Y, Yoshimura Y, Ohnishi H, et al. Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem 2010; 285(38): 29270-8.
[50]
Miyoshi K, Tsuji D, Kudoh K, et al. Generation of human induced pluripotent stem cells from oral mucosa. J Biosci Bioeng 2010; 110(3): 345-50.
[51]
Otsu K, Kishigami R, Oikawa-Sasaki A, et al. Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev 2012; 21(7): 1156-64.
[52]
Wen Y, Wang F, Zhang W, et al. Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Eng Part A 2012; 18(15-16): 1677-85.
[53]
Cai J, Zhang Y, Liu P, et al. Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regen (Lond) 2013; 2(1): 6.
[54]
Selman K, Kafatos FC. Transdifferentiation in the labial gland of silk moths: Is DNA required for cellular metamorphosis? Cell Differ 1974; 3(2): 81-94.
[55]
Eguchi G, Okada TS. Differentiation of lens tissue from the progeny of chick retinal pigment cells cultured in vitro: A demonstration of a switch of cell types in clonal cell culture. Proc Natl Acad Sci USA 1973; 70(5): 1495-9.
[56]
Dupont C, Armant DR, Brenner CA. Epigenetics: Definition, mechanisms and clinical perspective. Semin Reprod Med 2009; 27(5): 351-7.
[57]
Cho YD, Yoon WJ, Kim WJ, et al. Epigenetic modifications and canonical wingless/int-1 class (WNT) signaling enable trans-differentiation of nonosteogenic cells into osteoblasts. J Biol Chem 2014; 289(29): 20120-8.
[58]
Goldberg AD, Allis CD, Bernstein E. Epigenetics: A landscape takes shape. Cell 2007; 128(4): 635-8.
[59]
Chen FM, Jin Y. Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities. Tissue Eng Part B Rev 2010; 16(2): 219-55.
[60]
Dabra S, Chhina K, Soni N, Bhatnagar R. Tissue engineering in periodontal regeneration: A brief review. Dent Res J (Isfahan) 2012; 9(6): 671-80.
[61]
Park CH, Kim KH, Lee YM, Seol YJ. Advanced engineering strategies for periodontal complex regeneration. Materials (Basel) 2016; 9(1)
[62]
Carletti E, Motta A, Migliaresi C. Scaffolds for tissue engineering and 3D cell culture. Methods Mol Biol 2011; 695: 17-39.
[63]
Zhang X, Zhang Y. Tissue Engineering Applications of Three-Dimensional Bioprinting. Cell Biochem Biophys 2015; 72(3): 777-82.
[64]
Park CH, Kim KH, Lee YM, Giannobile WV, Seol YJ. 3D printed, microgroove pattern-driven generation of oriented ligamentous architectures. Int J Mol Sci 2017; 18(9)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy