Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

A Review on Micro-Patterning Processes of Vertically Aligned Carbon Nanotubes Array (VACNTs Array)

Author(s): Mohd Asyraf Bin Mohd Razib and Tanveer Saleh*

Volume 15, Issue 4, 2019

Page: [328 - 353] Pages: 26

DOI: 10.2174/1573413714666180813110942

Price: $65

Abstract

Vertically Aligned Carbon Nanotubes array which is also sometimes labeled as carbon nanotubes forests has many applications in several engineering fields for its remarkable mechanical, electrical, optical, and thermal properties. The Vertically Aligned Carbon Nanotubes array is often employed in developing microdevices such as pressure sensor, angle sensor, switches, etc. To successfully integrate carbon nanotubes forest to the micro-electro-mechanical systems based devices, micropatterning of the carbon nanotubes forest is required. There are several methods available to realize micropatterning of Vertically Aligned Carbon Nanotubes array, from in-situ patterning during the growth process to post-patterning process. Each has its advantages and disadvantages. This paper will discuss elaborately different patterning processes of the carbon nanotubes forest and their different characteristics.

Keywords: Micro-patterning, CNT forest, VACNT Array, CNT, MWCNT, µEDM, laser.

Graphical Abstract
[1]
Sohn, J.I.; Lee, S.; Song, Y-H.; Choi, S-Y.; Cho, K-I.; Nam, K-S. Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays. Appl. Phys. Lett., 2001, 78(7), 901.
[2]
Ren, Z.F.; Huang, Z.P.; Wang, D.Z.; Wen, J.G.; Xu, J.W.; Wang, J.H.; Calvet, L.E.; Chen, J.; Klemic, J.F.; Reed, M.A. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett., 1999, 75(8), 1086.
[3]
Teo, K.B.K.; Chhowalla, M.; Amaratunga, G.A.J.; Milne, W.I.; Hasko, D.G.; Pirio, G.; Legagneux, P.; Wyczisk, F.; Pribat, D. Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett., 2001, 79(10), 1534.
[4]
Kind, B.H.; Bonard, J.; Emmenegger, C.; Nilsson, L.; Hernadi, K.; Maillard-schaller, E.; Schlapbach, L.; Forró, L.; Kern, K. Patterned films of nanotubes using microcontact printing of catalysts. Adv. Mater., 1999, 11(15), 1285-1289.
[5]
Nilsson, L.; Groening, O.; Emmenegger, C.; Kuettel, O.; Schaller, E.; Schlapbach, L.; Kind, H.; Bonard, J-M.; Kern, K. Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett., 2000, 76(15), 2071.
[6]
Terrones, M.; Grobert, N.; Olivares, J.; Zhang, J.P. Controlled production of aligned-nanotube bundles. Nature, 1997, 388(6637), 52-55.
[7]
Fan, S.; Chapline, M.G.; Franklin, N.R.; Tombler, T.W.; Cassell, A.M.; Dai, H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283(5401), 512-514.
[8]
Li, J.; Papadopoulos, C.; Xu, J.M.; Moskovits, M. Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett., 1999, 75(3), 367.
[9]
De Volder, M.; Park, S.; Tawfick, S.; Hart, A.J. Strain-engineered manufacturing of freeform carbon nanotube microstructures. Nat. Commun., 2014, 5, 4512.
[10]
Lim, K.Y.; Sow, C.H.; Lin, J.; Cheong, F.C.; Shen, Z.X.; Thong, J.T.L.; Chin, K.C.; Wee, A.T.S. Laser pruning of carbon nanotubes as a route to static and movable structures. Adv. Mater., 2003, 15(3), 300-303.
[11]
Hung, W.H.; Kumar, R.; Bushmaker, A.; Cronin, S.B.; Bronikowski, M.J. Rapid prototyping of three-dimensional microstructures from multiwalled carbon nanotubes. Appl. Phys. Lett., 2007, 91(9), 93121.
[12]
Cheong, F.C.; Lim, K.Y.; Sow, C.H.; Lin, J.; Ong, C.K. Large area patterned arrays of aligned carbon nanotubes via laser trimming. Nanotechnology, 2003, 14(4), 433-437.
[13]
Emplit, A.; Tooten, E.; Xhurdebise, V.; Huynen, I. Multifunctional material structures based on laser-etched carbon nanotube arrays. Micromachines, 2014, 5, 756-765.
[14]
Kordás, K.; Tóth, G.; Moilanen, P.; Kumpumäki, M.; Vähäkangas, J.; Uusimäki, A.; Vajtai, R.; Ajayan, P.M. Chip cooling with integrated carbon nanotube microfin architectures. Appl. Phys. Lett., 2007, 90(12), 123105.
[15]
Lim, Z.H.; Sow, C-H. Laser-induced rapid carbon nanotube micro-actuators. Adv. Funct. Mater., 2010, 20(5), 847-852.
[16]
Hong, N.T.; Baek, I.H.; Rotermund, F.; Koh, K.H.; Lee, S.; Hong, N.T.; Baek, I.H.; Rotermund, F.; Koh, K.H.; Lee, S. Femtosecond laser machining: A new technique to fabricate carbon nanotube based emitters. J. Vac. Sci. Technol. B, 2010, 28(2), 38-42.
[17]
Yuzvinsky, T.D.; Fennimore, A.M.; Mickelson, W.; Esquivias, C.; Zettl, A.; Yuzvinsky, T.D.; Fennimore, A.M.; Mickelson, W.; Esquivias, C.; Zettl, A. Precision cutting of nanotubes with a low-energy electron beam. Appl. Phys. Lett., 2005, 86, 53109.
[18]
Rajabifar, B.; Kim, S.; Slinker, K.; Ehlert, G.J.; Hart, A.J.; Maschmann, M.R. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing. Appl. Phys. Lett., 2015, 107(14), 143102.
[19]
Sears, K.; Skourtis, C.; Atkinson, K.; Finn, N.; Humphries, W. Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength. Carbon N.Y., 2010, 48(15), 4450-4456.
[20]
Rubio, A.; Apell, S.P.; Venema, L.C.; Dekker, C. A mechanism for cutting carbon nanotubes with a scanning tunneling microscope. Eur. Phys. J. B, 2000, 17(2), 301-308.
[21]
Zhu, Y.W.; Sow, C.; Sim, M.; Sharma, G.; Kripesh, V. Scanning localized arc discharge lithography for the fabrication of microstructures made of carbon nanotubes. Nanotechnology, 2007, 18(38), 385304.
[22]
Khalid, W.; Ali, M.S.M.; Dahmardeh, M.; Choi, Y.; Yaghoobi, P.; Nojeh, A.; Takahata, K. High-aspect-ratio, free-form patterning of carbon nanotube forests using micro-electro-discharge machining. Diam. Relat. Mater., 2010, 19(11), 1405-1410.
[23]
Dahmardeh, M.; Khalid, W.; Mohamed Ali, M.S.; Choi, Y.; Yaghoobi, P.; Nojeh, A.; Takahata, K. High-Aspect-Ratio, 3-D Micromachining of Carbon-Nanotube Forests by Micro-Electro- Discharge Machining in Air. Proceedings of the MEMS 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, January 23-27,, 2011, pp. 272-275.
[24]
Dahmardeh, M.; Nojeh, A.; Takahata, K. Possible mechanism in dry micro-electro-discharge machining of carbon-nanotube forests: A study of the effect of oxygen. J. Appl. Phys., 2011, 109, 93308.
[25]
Saleh, T.; Dahmardeh, M.; Bsoul, A.; Nojeh, A.; Takahata, K. Field-emission-assisted approach to dry micro-electro-discharge machining of carbon-nanotube forests. J. Appl. Phys., 2011, 110, 103305.
[26]
Saleh, T.; Dahmardeh, M.; Bsoul, A.; Nojeh, A.; Takahata, K. High-Precision Dry Micro-Electro-Discharge Machining Of Carbon-Nanotube Forests With Ultralow Discharge Energy. Proceedings of the MEMS 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems, Paris, France, January 29- February 2,, 2012, pp. 259-262.
[27]
Saleh, T. μ-Patterning of Carbon Nanotube (CNT) forest for MEMS applications. IOP Conf. Ser. Mater. Sci. Eng., 2013, 53, p. 12050.
[28]
Saleh, T.; Dahmardeh, M.; Nojeh, A.; Takahata, K. Dry micro-electro-discharge machining of carbon-nanotube forests using sulphur-hexafluoride. Carbon N.Y., 2013, 52, 288-295.
[29]
Sarwar, M.S.U.; Dahmardeh, M.; Nojeh, A.; Takahata, K. Batch-mode micropatterning of carbon nanotube forests using UV-LIGA assisted micro-electro-discharge machining. J. Mater. Process. Technol., 2014, 214(11), 2537-2544.
[30]
Liu, H.; Li, S.; Zhai, J.; Huanjun, L.; Quanshui, Z.; Lei, J.; Daoben, Z. Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angew. Chem. Int. Ed., 2004, 43, 1146-1149.
[31]
Lau, K.K.S.; Teo, K.B.K.; Chhowalla, M.; Amaratunga, G.A.J.; Milne, W.I.; Mckinley, G.H.; Gleason, K.K. Superhydrophobic carbon nanotube forests. Nano Lett., 2003, 3(12), 1701-1705.
[32]
Zhao, Y.; Fan, J. Clusters of bundled nanorods in nanocarpet effect clusters of bundled nanorods in nanocarpet effect. Appl. Phys. Lett., 2006, 88, 103123.
[33]
Chakrapani, N.; Wei, B.; Carrillo, A.; Ajayan, P.M.; Kane, R.S. Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc. Natl. Acad. Sci., 2004, 101(12), 4009-4012.
[34]
Futaba, D.N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater., 2006, 5, 987-994.
[35]
Futaba, D.N.; Miyake, K.; Murata, K.; Hayamizu, Y.; Yamada, T.; Sasaki, S.; Yumura, M.; Hata, K. Dual porosity single-walled carbon nanotube material. Nano Lett., 2009, 9(9), 3302-3307.
[36]
De Volder, B.M.; Tawfick, S.H.; Park, S.J.; Copic, D.; Zhao, Z.; Lu, W.; Hart, A.J. Diverse 3D microarchitectures made by capillary forming of carbon nanotubes. Adv. Mater., 2010, 22, 4384-4389.
[37]
Wang, T.; Jiang, D.; Chen, S.; Jeppson, K.; Ye, L.; Liu, J. Formation of three-dimensional carbon nanotube structures by controllable vapor densification. Mater. Lett., 2012, 78, 184-187.
[38]
Jiang, D.; Wang, T.; Chen, S.; Ye, L.; Liu, J. Paper-mediated controlled densification and low temperature transfer of carbon nanotube forests for electronic interconnect application. Microelectron. Eng., 2013, 103, 177-180.
[39]
Huang, X.; Zhou, J.J.; Sansom, E.; Gharib, M.; Haur, S.C. Inherent-opening-controlled pattern formation in carbon nanotube arrays. Nanotechnology, 2007, 18, 305301.
[40]
Correa-duarte, M.A.; Wagner, N.; Morsczeck, C.; Thie, M.; Giersig, M. Fabrication and biocompatibility of carbon nanotube-based 3d networks as scaffolds for cell seeding and growth. Nano Lett., 2004, 4(11), 2233-2236.
[41]
Wardle, B.B.L.; Saito, D.S.; Garcı, E.J.; Hart, A.J.; Villoria, D.; Verploegen, E.A. fabrication and characterization of ultrahigh-volume- fraction aligned carbon nanotube - polymer composites. Adv. Mater., 2008, 20, 2707-2714.
[42]
Wang, T.; Jeppson, K.; Liu, J. Dry densification of carbon nanotube bundles. Carbon N.Y., 2010, 48(13), 3795-3801.
[43]
Saleh, T.; Moghaddam, M.V.; Mohamed Ali, M.S.; Dahmardeh, M.; Foell, C.A.; Nojeh, A.; Takahata, K. Transforming carbon nanotube forest from darkest absorber to reflective mirror. Appl. Phys. Lett., 2012, 101(6), 61913.
[44]
Asyraf, M.; Rana, M.M.; Saleh, T.; Fan, H.D.E.; Koch, A.T.; Nojeh, A.; Takahata, K.; Suriani, A.B. Study on micro-patterning process of Vertically Aligned Carbon Nanotubes (VACNTs). Fuller. Nanotub. Carbon Nanostruct., 2016, 24(2), 88-89.
[45]
Razib, M.; Saleh, T.; Hassan, M. Micro-Mechanical Bending (M2B) Method for Carbon Nanotube (CNT) Based Sensor Fabrication. Proceedings of 2014 International Conference On Smart Instrumentations, Measurement and Applications Kuala Lumpur Malaysia November 25-27. 2014, pp. 25-27.
[46]
Mukherjee, S.; Misra, A. Broadband wavelength-selective reflectance and selective polarization by a tip-bent vertically aligned multi-walled carbon nanotube forest. J. Phys. D Appl. Phys., 2014, 47, 235501.
[47]
Asyraf, M.; Rana, M.; Saleh, T.; Fan, H.; Koch, A.; Nojeh, A.; Takahata, K.; Gani, A.; Abdul, B. Optical anisotropy in micromechanically rolled carbon nanotube forest. Electron. Mater. Lett., 2017, 13(5), 442-448.
[48]
Jiang, Y.; Lin, L. A two-stage, self-aligned vertical densification process for as-grown CNT forests in supercapacitor applications. Sens. Actuators A Phys., 2012, 188, 261-267.
[49]
Su, Y.; Pei, S.; Du, J.; Liu, W-B.; Liu, C.; Cheng, H-M. Patterning flexible single-walled carbon nanotube thin films by an ozone gas exposure method. Carbon N.Y., 2013, 53, 4-10.
[50]
Hou, P.; Liu, C.; Cheng, H. Purification of carbon nanotubes. Carbon N.Y., 2008, 46, 2004-2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy