Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Caffeic Acid Phenethyl Ester Effects: In Silico Study of its Osteoimmunological Mechanisms

Author(s): Yuhao Zhao, Xiaokun Pang, Akriti Nepal, Xincan Jiang, Xiaoxin Xu, Dongbin Zhao, Ghulam Murtaza* and Yanxu Ma*

Volume 17, Issue 5, 2020

Page: [556 - 562] Pages: 7

DOI: 10.2174/1570180815666180803111902

Price: $65

Abstract

Background: Biological system complexity impedes the drug target identification by biological experiments. Thus drugs, rather than acting on target site only, can interact with the entire biological system. Study of this phenomenon, known as network pharmacology, provides grounds for biological target identification of new drugs or acts as a foundation for the discovery of new targets of present drugs. No publication is available on the interaction network of CAPE.

Aim: This study was aimed at the investigation of the candidate targets and possible interactions of caffeic acid phenethyl ester (CAPE) involved in its osteoimmunological effects.

Methods: This study encompasses the investigation of candidate targets and possible interactions of CAPE by analyzing through PASS Prediction and constructing a biological network of CAPE.

Results: In response to input (CAPE), PASS Prediction generated a network of 1723 targets. While selecting the probability to be active (Pa) value greater than 0.7 brought forth only 27 targets for CAPE. Most of these targets predicted the therapeutic role of CAPE as an osteoimmunological agent. Apart from this, this network pharmacology also identified 10 potential anti-cancer targets for CAPE, out of which 7 targets have been used efficiently in developing potent osteoimmunological drugs.

Conclusion: This study provides scientific prediction of the mechanisms involved in osteoimmunological effects of CAPE, presenting its promising use in the development of a natural therapeutic agent for the pharmaceutical industry. CAPE targets identified by web-based online databases and network pharmacology need additional in silico assessment such as docking and MD simulation studies and experimental verification to authenticate these results.

Keywords: Drug target, drug-protein interaction, in silico prediction, osteoimmunological, PASS prediction, CAPE.

Graphical Abstract
[1]
Gilchrist, M.; Thorsson, V.; Li, B.; Rust, A.G.; Korb, M.; Roach, J.C.; Kennedy, K.; Hai, T.; Bolouri, H.; Aderem, A. Systems biology approaches identify ATF3 as a negative regulator of toll-like receptor 4. Nature, 2006, 441(7090), 173-178.
[http://dx.doi.org/10.1038/nature04768] [PMID: 16688168]
[2]
Gao, K.; Zheng, C.; Wang, T.; Zhao, H.; Wang, J.; Wang, Z.; Zhai, X.; Jia, Z.; Chen, J.; Zhou, Y.; Wang, W. 1-Deoxynojirimycin: Occurrence, Extraction, chemistry, oral pharmacokinetics, biological activities and in silico target fishing. Molecules, 2016, 21(11), 1600.
[http://dx.doi.org/10.3390/molecules21111600] [PMID: 27886092]
[3]
Fang, K.; Zhao, H.; Sun, C.; Lam, C.M.; Chang, S.; Zhang, K.; Panda, G.; Godinho, M.; Martins dos Santos, V.A.; Wang, J. Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction. BMC Syst. Biol., 2011, 5, 83-89.
[http://dx.doi.org/10.1186/1752-0509-5-83] [PMID: 21609491]
[4]
Overton, I.M.; Graham, S.; Gould, K.A.; Hinds, J.; Botting, C.H.; Shirran, S.; Barton, G.J.; Coote, P.J. Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus. BMC Syst. Biol., 2011, 5, 68-74.
[http://dx.doi.org/10.1186/1752-0509-5-68] [PMID: 21569391]
[5]
Demestre, M.; Messerli, S.M.; Celli, N.; Shahhossini, M.; Kluwe, L.; Mautner, V.; Maruta, H. CAPE (caffeic acid phenethyl ester)-based propolis extract (Bio 30) suppresses the growth of human neurofibromatosis (NF) tumor xenografts in mice. Phytother. Res., 2009, 23(2), 226-230.
[http://dx.doi.org/10.1002/ptr.2594] [PMID: 18726924]
[6]
Chen, H.C.; Chen, J.H.; Chang, C.; Shieh, C.J. Optimization of ultrasound-accelerated synthesis of enzymatic caffeic acid phenethyl ester by response surface methodology. Ultrason. Sonochem., 2011, 18(1), 455-459.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.018] [PMID: 20797894]
[7]
Chen, H.C.; Ju, H.Y.; Twu, Y.K.; Chen, J.H.; Chang, C.M.; Liu, Y.C.; Chang, C.; Shieh, C.J. Optimized enzymatic synthesis of caffeic acid phenethyl ester by RSM. N. Biotechnol., 2010, 27(1), 89-93.
[http://dx.doi.org/10.1016/j.nbt.2009.12.002] [PMID: 20018263]
[8]
Kurata, A.; Kitamura, Y.; Irie, S.; Takemoto, S.; Akai, Y.; Hirota, Y.; Fujita, T.; Iwai, K.; Furusawa, M.; Kishimoto, N. Enzymatic synthesis of caffeic acid phenethyl ester analogues in ionic liquid. J. Biotechnol., 2010, 148(2-3), 133-138.
[http://dx.doi.org/10.1016/j.jbiotec.2010.05.007] [PMID: 20553773]
[9]
Murtaza, G.; Karim, S.; Akram, M.R.; Khan, S.A.; Azhar, S.; Mumtaz, A. caffeic acid phenethyl ester and therapeutic potentials. Bio Med Res. Int., 2014, 2014, 9 pages
[http://dx.doi.org/10.1155/2014/145342] [PMID: 145342]
[10]
Murtaza, G.; Sajjad, A.; Mehmood, Z.; Shah, S.H.; Siddiqi, A.R. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer. Yao Wu Shi Pin Fen Xi, 2015, 23(1), 11-18.
[http://dx.doi.org/10.1016/j.jfda.2014.06.001] [PMID: 28911433]
[11]
Tolba, M.F.; Azab, S.S.; Khalifa, A.E.; Abdel-Rahman, S.Z.; Abdel-Naim, A.B. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: A review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects. IUBMB Life, 2013, 65(8), 699-709.
[http://dx.doi.org/10.1002/iub.1189] [PMID: 23847089]
[12]
Kumazawa, S.; Ahn, M.R.; Fujimoto, T.; Kato, M. Radical-scavenging activity and phenolic constituents of propolis from different regions of Argentina. Nat. Prod. Res., 2010, 24(9), 804-812.
[http://dx.doi.org/10.1080/14786410802615270] [PMID: 20461626]
[13]
Carreño, A.L.; Alday, E.; Quintero, J.; Pérez, L.; Valencia, D.; Robles-Zepeda, R.; Valdez-Ortega, J.; Hernandexz, J.; Velazquez, C. Protective effect of caffeic acid phenethyl ester (CAPE) against oxidative stress. J. Funct. Foods, 2017, 29, 178-184.
[http://dx.doi.org/10.1016/j.jff.2016.12.008]
[14]
Pinto, J.P.; Machado, R.S.R.; Xavier, J.M.; Futschik, M.E. Targeting molecular networks for drug research. Front. Genet., 2014, 5, 160.
[http://dx.doi.org/10.3389/fgene.2014.00160] [PMID: 24926314]
[15]
Jamkhande, P.G.; Barde, S.R. Evaluation of anthelmintic activity and in silico PASS assisted prediction of Cordia dichotoma (Forst.) root extract. Anc. Sci. Life, 2014, 34(1), 39-43.
[http://dx.doi.org/10.4103/0257-7941.150779] [PMID: 25737609]
[16]
Kuhn, M.; Szklarczyk, D.; Pletscher-Frankild, S.; Blicher, T.H.; von Mering, C.; Jensen, L.J.; Bork, P. STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res., 2014, 42(Database issue), D401-D407.
[http://dx.doi.org/10.1093/nar/gkt1207] [PMID: 24293645]
[17]
Wang, S.; Tong, Y.; Ng, T.B.; Lao, L.; Lam, J.K.W.; Zhang, K.Y.; Zhang, Z.J.; Sze, S.C.W. Network pharmacological identification of active compounds and potential actions of Erxian decoction in alleviating menopause-related symptoms. Chin. Med., 2015, 10, 19-23.
[http://dx.doi.org/10.1186/s13020-015-0051-z] [PMID: 26191080]
[18]
Wang, X.; Yang, B.; Zhang, A.; Sun, H.; Yan, G. Potential drug targets on insomnia and intervention effects of Jujuboside A through metabolic pathway analysis as revealed by UPLC/ESI-SYNAPT-HDMS coupled with pattern recognition approach. J. Proteomics, 2012, 75(4), 1411-1427.
[http://dx.doi.org/10.1016/j.jprot.2011.11.011] [PMID: 22134358]
[19]
Yao, X.; Hao, H.; Li, Y.; Li, S. Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network. BMC Syst. Biol., 2011, 5, 79-86.
[http://dx.doi.org/10.1186/1752-0509-5-79] [PMID: 21599985]
[20]
Cicero, A.F.G.; Colletti, A. Role of phytochemicals in the management of metabolic syndrome. Phytomedicine, 2016, 23(11), 1134-1144.
[http://dx.doi.org/10.1016/j.phymed.2015.11.009] [PMID: 26778479]
[21]
Peterson, D.E.; Bensadoun, R.J.; Roila, F. Management of oral and gastrointestinal mucositis. ESMO Clinical Practice Guidelines. Ann. Oncol., 2011, 22(Suppl. 6), vi78-vi84.
[http://dx.doi.org/10.1093/annonc/mdr391] [PMID: 21908510]
[22]
Grossman, H. Does diabetes protect or provoke Alzheimer’s disease? Insights into the pathobiology and future treatment of Alzheimer’s disease. CNS Spectr., 2003, 8(11), 815-823.
[http://dx.doi.org/10.1017/S1092852900019258] [PMID: 14702004]
[23]
Wagner, K.; Vito, S.; Inceoglu, B.; Hammock, B.D. The role of long chain fatty acids and their epoxide metabolites in nociceptive signaling. Prostaglandins Other Lipid Mediat., 2014, 113-115, 2-12.
[http://dx.doi.org/10.1016/j.prostaglandins.2014.09.001] [PMID: 25240260]
[24]
Romkes, M.; Faletto, M.B.; Blaisdell, J.A.; Raucy, J.L.; Goldstein, J.A. Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry, 1991, 30(13), 3247-3255.
[http://dx.doi.org/10.1021/bi00227a012] [PMID: 2009263]
[25]
Xiang, D.; Wang, D.; He, Y.; Xie, J.; Zhong, Z.; Li, Z.; Xie, J. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling. Anticancer Drugs, 2006, 17(7), 753-762.
[http://dx.doi.org/10.1097/01.cad.0000224441.01082.bb] [PMID: 16926625]
[26]
Song, Y.S.; Park, E.H.; Hur, G.M.; Ryu, Y.S.; Lee, Y.S.; Lee, J.Y.; Kim, Y.M.; Jin, C. Caffeic acid phenethyl ester inhibits nitric oxide synthase gene expression and enzyme activity. Cancer Lett., 2002, 175(1), 53-61.
[http://dx.doi.org/10.1016/S0304-3835(01)00787-X] [PMID: 11734336]
[27]
Hoffman, B.; Amanullah, A.; Shafarenko, M.; Liebermann, D.A. The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene, 2002, 21(21), 3414-3421.
[http://dx.doi.org/10.1038/sj.onc.1205400] [PMID: 12032779]
[28]
Lishner, M.; Lalkin, A.; Klein, A.; Yarkoni, S.; Manor, Y.; Fejgin, M.; Leytin, V.; Ravid, M.; Amiel, A. The BCL-1, BCL-2, and BCL-3 oncogenes are involved in chronic lymphocytic leukemia. Detection by fluorescence in situ hybridization. Cancer Genet. Cytogenet., 1995, 85(2), 118-123.
[http://dx.doi.org/10.1016/0165-4608(95)00152-2] [PMID: 8548734]
[29]
Sánchez, J.; Serrano, J.; García-Castellano, J.M.; Madrigal, E.; Torres, A. Detection of myeloperoxidase by flow cytometry in acute lymphoblastic leukaemias with BCR-ABL gene rearrangement. Leukemia, 2001, 15(10), 1671-1672.
[http://dx.doi.org/10.1038/sj.leu.2402241] [PMID: 11587232]
[30]
Kazakov, A.; Müller, P.; Jagoda, P.; Semenov, A.; Böhm, M.; Laufs, U. Endothelial nitric oxide synthase of the bone marrow regulates myocardial hypertrophy, fibrosis, and angiogenesis. Cardiovasc. Res., 2012, 93(3), 397-405.
[http://dx.doi.org/10.1093/cvr/cvr305] [PMID: 22106415]
[31]
Zheng, Y.; Nishikawa, M.; Ikemura, M.; Yamashita, F.; Hashida, M. Development of bone-targeted catalase derivatives for inhibition of bone metastasis of tumor cells in mice. J. Pharm. Sci., 2012, 101(2), 552-557.
[http://dx.doi.org/10.1002/jps.22773] [PMID: 21953593]
[32]
Asensi, V.; Montes, A.H.; Valle, E.; Ocaña, M.G.; Astudillo, A.; Alvarez, V.; López-Anglada, E.; Solís, A.; Coto, E.; Meana, A.; Gonzalez, P.; Carton, J.A.; Paz, J.; Fierer, J.; Celada, A. The NOS3 (27-bp repeat, intron 4) polymorphism is associated with susceptibility to osteomyelitis. Nitric Oxide, 2007, 16(1), 44-53.
[http://dx.doi.org/10.1016/j.niox.2006.06.005] [PMID: 16889995]
[33]
Johnson, J.; Bagley, J.; Skaznik-Wikiel, M.; Lee, H.J.; Adams, G.B.; Niikura, Y.; Tschudy, K.S.; Tilly, J.C.; Cortes, M.L.; Forkert, R.; Spitzer, T.; Iacomini, J.; Scadden, D.T.; Tilly, J.L. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell, 2005, 122(2), 303-315.
[http://dx.doi.org/10.1016/j.cell.2005.06.031] [PMID: 16051153]
[34]
Jiang, C.; Xiao, F.; Gu, X.; Zhai, Z.; Liu, X.; Wang, W.; Tang, T.; Wang, Y.; Zhu, Z.; Dai, K.; Qin, A.; Wang, J. Inhibitory effects of ursolic acid on osteoclastogenesis and titanium particle-induced osteolysis are mediated primarily via suppression of NF-κB signaling. Biochimie, 2015, 111, 107-118.
[http://dx.doi.org/10.1016/j.biochi.2015.02.002] [PMID: 25681755]
[35]
Tuan, R.S.; Lee, F.Y.T.; Konttinen, Y.; Wilkinson, J.M.; Smith, R.L. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? J. Am. Acad. Orthop. Surg., 2008, 16(Suppl. 1), S42-S48.
[http://dx.doi.org/10.5435/00124635-200800001-00010] [PMID: 18612013]
[36]
Akyol, S.; Kursunlu, S.F.; Akyol, O. Bone resorption, matrix metalloproteinases and caffeic acid phenethyl ester. Acta Orthop. Traumatol. Turc., 2016, 50(6), 706-707.
[http://dx.doi.org/10.1016/j.aott.2016.08.010] [PMID: 27965046]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy