Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Differential Protein Expression in Shewanella seohaensis Decolorizing Azo Dyes

Author(s): Nadine Ana de Souza, Nagappa Ramaiah*, Samir Damare, Bliss Furtado, Chellandi Mohandass, Anushka Patil and Marsha De Lima

Volume 16, Issue 2, 2019

Page: [156 - 164] Pages: 9

DOI: 10.2174/1570164615666180731110845

Price: $65

Abstract

Background: Microbial remediation is an ecologically safe alternative to controlling environmental pollution caused by toxic aromatic compounds including azo dyes. Marine bacteria show excellent potential as agents of bioremediation. However, a lack of understanding of the entailing mechanisms of microbial degradation often restricts its wide-scale and effective application.

Objective: To understand the changes in a bacterial proteome profile during azo dye decolorization.

Method: In this study, we tested a Gram-negative bacterium, Shewanella seohaensis NIODMS14 isolated from an estuarine environment and grown in three different azo dyes (Reactive Black 5 (RB5), Reactive Green 19 (RG19) and Reactive Red 120 (RR120)). The unlabeled bacterial protein samples extracted during the process of dye decolorization were subject to mass spectrometry. Relative protein quantification was determined by comparing the resultant MS/MS spectra for each protein.

Results: Maximum dye decolorization of 98.31% for RB5, 91.49% for RG19 and 97.07% for RR120 at a concentration of 100 mg L-1 was observed. The liquid chromatography-mass spectrometry - Quadrupole Time of Flight (LCMS-QToF) analysis revealed that as many as 29 proteins were up-regulated by 7 hours of growth and 17 by 24 hours of growth. Notably, these were common across the decolorized solutions of all three azo dyes. In cultures challenged with the azo dyes, the major class of upregulated proteins was cellular oxidoreductases and an alkyl hydroperoxide reductase (SwissProt ID: A9KY42).

Conclusion: The findings of this study on the bacterial proteome profiling during the azo dye decolorization process are used to highlight the up-regulation of important proteins that are involved in energy metabolism and oxido-reduction pathways. This has important implications in understanding the mechanism of azo dye decolorization by Shewanella seohaensis.

Keywords: Azo dye, decolorization, mass spectrometry, proteomics, Shewanella seohaensis, up-regulation.

Graphical Abstract
[1]
Chen, K.C.; Wu, J.Y.; Liou, D.J.; Hwang, S.C.J. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol., 2003, 101(1), 57-68.
[2]
Zollinger, H. Color Chemistry-Synthesis, Properties and Applications of Organic Dyes And Pigment Wiley Online Library, 3rd Ed., VCH: New York,; , 1987.
[3]
Carmen, Z.; Daniela, S. In: Organic pollutants ten years after the Stockholm convention-environmental and analytical update; Puzyn, T.; Ed.; In Tech., Open, 2012, pp. 55-86.
[4]
Kirk, R.E.; Othmer, D.F. Kirk-Othmer encyclopedia of chemical technology, 1993.
[5]
Forgacs, E.; Cserhati, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int., 2004, 30(7), 953-971.
[6]
Teli, M.D. Textile coloration industry in India. Color. Technol., 2008, 124(1), 1-13.
[7]
Dupont, G. La teinture; Les Editions de l’industrie Textile: Paris, 2002;
[8]
McMullan, G.; Meehan, C.; Conneely, A.; Kirby, N.; Robinson, T.; Nigam, P.; Banat, I.M.; Marchant, R.; Smyth, W.F. Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol., 2001, 56(1-2), 81-87.
[9]
Khalid, A.; Arshad, M.; Crowley, D.E. Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl. Microbiol. Biotechnol., 2008, 79(6), 1053-1059.
[10]
Joo, D.J.; Shin, W.S.; Choi, J.H.; Choi, S.J.; Kim, M.C.; Han, M.H.; Ha, T.W.; Kim, Y.H. Decolorization of reactive dyes using inorganic coagulants and synthetic polymer. Dyes Pigm., 2007, 73(1), 59-64.
[11]
Jin, X.; Liu, G.; Xu, Z.; Tao, W. Decolourisation of a dye industry effluent by Aspergillus fumigatus XC6. Appl. Microbiol. Biotechnol., 2007, 74(1), 239-243.
[12]
Bae, J.S.; Freeman, H.S. Aquatic toxicity evaluation of copper-complexed direct dyes to the Daphnia magna. Dyes Pigm., 2007, 73(1), 126-132.
[13]
Oliveira, D.P.; Carneiro, P.A.; Sakagami, M.K.; Zanoni, M.V.B.; Umbuzeiro, G.A. Chemical characterization of a dye processing plant effluent-identification of the mutagenic components. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2007, 626(1), 135-142.
[14]
Shah, M.P. Microbial degradation of textile dye (Remazol Black B) by Bacillus spp. ETL-2012. J. Appl. Environ. Microbiol, 2013, 1(1), 6-11.
[15]
Stolz, A. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol., 2001, 56(1), 69-80.
[16]
Dave, S.R.; Patel, T.L.; Tipre, D.R. Bacterial degradation of azo dye containing wastes.Microbial Degradation of Synthetic Dyes in Wastewaters; Singh, S.N., Ed.; Springer International Publishing: Switzerland, 2015, pp. 57-83.
[17]
de Lima, R.O.A.; Bazo, A.P.; Salvadori, D.M.F.; Rech, C.M.; de Palma Oliveira, D.; de Aragão Umbuzeiro, G. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2007, 626(1), 53-60.
[18]
Sinha, S.; Singh, R.; Chaurasia, A.K.; Nigam, S. Self-sustainable Chlorella pyrenoidosa strain NCIM 2738 based photobioreactor for removal of Direct Red-31 dye along with other industrial pollutants to improve the water-quality. J. Hazard. Mater., 2016, 306, 386-3 94.
[19]
Khan, R.; Bhawana, P.; Fulekar, M.H. Microbial decolorization and degradation of synthetic dyes: A review. Rev. Environ. Sci. Biotechnol., 2013, 12(1), 75-97.
[20]
Mahmood, S.; Khalid, A.; Arshad, M.; Mahmood, T.; Crowley, D.E. Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit. Rev. Biotechnol., 2016, 36(4), 639-651.
[21]
Heidelberg, J.F.; Paulsen, I.T.; Nelson, K.E.; Gaidos, E.J.; Nelson, W.C.; Read, T.D.; Eisen, J.A.; Seshadri, R.; Ward, N.; Methe, B.; Clayton, R.A. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol., 2002, 20(11), 1118-1123.
[22]
Zhao, B.; Poh, C.L. Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics, 2008, 8(4), 874-881.
[23]
Linsen, L.; Löcherbach, J.; Berth, M.; Becher, D.; Bernhardt, J. Visual analysis of gel-free proteome data. IEEE Trans. Vis. Comput. Graph., 2006, 12(4), 497-508.
[24]
Dong, X.; Zhou, J.; Liu, Y. Peptone-induced biodecolorization of reactive brilliant blue (KN-R) by Rhodocyclus gelatinosus XL-1. Process Biochem., 2003, 39(1), 89-94.
[25]
Friedman, D.B. Quantitative proteomics for two-dimensional gels using difference gel electrophoresis. Methods Mol. Biol., 2007, 367, 219-239.
[26]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[27]
Kinter, M.; Sherman, N.E. Protein Sequencing and Identification Using Tandem Mass Spectrometry; Wiley & Sons: New York, 2000.
[28]
Hong, Y.G.; Gu, J.D. Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain. Appl. Microbiol. Biotechnol., 2010, 88(3), 637-643.
[29]
Chen, X.; Xu, M.; Wei, J.; Sun, G. Two different electron transfer pathways may involve in azoreduction in Shewanella decolorationis S12. Appl. Microbiol. Biotechnol., 2010, 86(2), 743-751.
[30]
Ali, H. Biodegradation of synthetic dyes- a review. Water Air Soil Pollut., 2010, 213(1-4), 251-273.
[31]
Pearce, C.I.; Lloyd, J.R.; Guthrie, J.T. The removal of color from textile wastewater using whole bacterial cells: A review. Dyes Pigm., 2003, 58(3), 179-196.
[32]
Wu, J.; Kim, K.S.; Sung, N.C.; Kim, C.H.; Lee, Y.C. Isolation and characterization of Shewanella oneidensis WL-7 capable of decolorizing azo dye reactive black 5. J. Gen. Appl. Microbiol., 2009, 55(1), 51-55.
[33]
Hong, Y.; Xu, M.; Guo, J.; Xu, Z.; Chen, X.; Sun, G. Respiration and growth of Shewanella decolorationis S12 with azo compound as sole electron acceptor. Appl. Environ. Microbiol., 2007, 73(1), 64-72.
[34]
Brigé, A.; Motte, B.; Borloo, J.; Buysschaert, G.; Devreese, B.; Van Beeumen, J.J. Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway. Microb. Biotechnol., 2008, 1(1), 40-52.
[35]
Wang, B.; Xu, M.; Sun, G. Comparative analysis of membranous proteomics of Shewanella decolorationis S12 grown with azo compound or Fe (III) citrate as sole terminal electron acceptor. Appl. Microbiol. Biotechnol., 2010, 86(5), 1513-1523.
[36]
Kudlich, M.; Keck, A.; Klein, J.; Stolz, A. Localization of the enzyme system involved in the anaerobic degradation of azo dyes by Sphingomonas sp. BN6 and effect of artificial redox mediators on the rate of azo reduction. Appl. Environ. Microbiol., 1997, 63(9), 3691-3694.
[37]
Dubbs, J.M.; Mongkolsuk, S. Peroxiredoxins in bacterial antioxidant defense.Peroxiredoxin Systems; Flohé, L.; Harris, J.R., Eds.; Springer: Netherlands, 2007, pp. 143-193.
[38]
Tang, X.; Yi, W.; Munske, G.R.; Adhikari, D.P.; Zakharova, N.L.; Bruce, J.E. Profiling the membrane proteome of Shewanella oneidensis MR-1 with new affinity labeling probes. J. Proteome Res., 2007, 6(2), 724-734.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy