Cancer-associated Cachexia, Reactive Oxygen Species and Nutrition Therapy

Author(s): Geir Bjørklund*, Maryam Dadar, Jan Aaseth, Salvatore Chirumbolo, Joeri J. Pen

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 31 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Cancer-related Cachexia (CAC) is a syndrome occurring in many cancer patients, with a detrimental effect on their survival. Recent reports have outlined that the syndrome may be partly explained by the deleterious and pro-inflammatory action of Reactive Oxygen Species (ROS). This review focuses on nutrients that theoretically could counteract the oxidative stress in tumor cells, fundamentally due to their antioxidant activity. The preclinical and clinical results obtained with the nutritional elements selenium, melatonin, taurine, carnosine, coenzyme Q10 (ubiquinone), and omega-3 polyunsaturated fatty acids (PUFA's) are discussed in the light of the pathophysiology of CAC. This should indicate that they are viable candidates for the treatment of CAC, with the ultimate goal to promote patient survival. Combination therapy with diet modification added to the novel pharmaceutical agent ghrelin, a hormone with anti-inflammatory properties, represents a promising concept.

Keywords: Cancer, cachexia, reactive oxygen species, nutrition, micronutrients, ghrelin.

[1]
Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-associated cachexia. Nat. Rev. Dis. Primers, 2018, 4, 17105.
[http://dx.doi.org/10.1038/nrdp.2017.105] [PMID: 29345251]
[2]
Berry, D.L.; Blonquist, T.; Nayak, M.M.; Roper, K.; Hilton, N.; Lombard, H.; Hester, A.; Chiavacci, A.; Meyers, S.; McManus, K. Cancer Anorexia and Cachexia: Screening in an Ambulatory Infusion Service and Nutrition Consultation
. Clin. J. Oncol. Nurs., 2018, 22(1), 63-68.
[http://dx.doi.org/10.1188/18.CJON.63-68] [PMID: 29350696]
[3]
Dewey, A.; Baughan, C.; Dean, T.; Higgins, B.; Johnson, I. Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Database Syst. Rev., 2007, (1)CD004597
[http://dx.doi.org/10.1002/14651858.CD004597.pub2] [PMID: 17253515]
[4]
Fearon, K.; Arends, J.; Baracos, V. Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol., 2013, 10(2), 90-99.
[http://dx.doi.org/10.1038/nrclinonc.2012.209] [PMID: 23207794]
[5]
Anderson, L.J.; Albrecht, E.D.; Garcia, J.M. Update on management of cancer-related cachexia. Curr. Oncol. Rep., 2017, 19(1), 3.
[http://dx.doi.org/10.1007/s11912-017-0562-0] [PMID: 28138933]
[6]
Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol., 2013, 31(12), 1539-1547.
[http://dx.doi.org/10.1200/JCO.2012.45.2722] [PMID: 23530101]
[7]
Laviano, A.; Koverech, A.; Mari, A. Cachexia: clinical features when inflammation drives malnutrition. Proc. Nutr. Soc., 2015, 74(4), 348-354.
[http://dx.doi.org/10.1017/S0029665115000117] [PMID: 25809872]
[8]
Homsi, J.; Luong, D. Symptoms and survival in patients with advanced disease. J. Palliat. Med., 2007, 10(4), 904-909.
[http://dx.doi.org/10.1089/jpm.2007.0004] [PMID: 17803412]
[9]
Utech, A.E.; Tadros, E.M.; Hayes, T.G.; Garcia, J.M. Predicting survival in cancer patients: the role of cachexia and hormonal, nutritional and inflammatory markers. J. Cachexia Sarcopenia Muscle, 2012, 3(4), 245-251.
[http://dx.doi.org/10.1007/s13539-012-0075-5] [PMID: 22648739]
[10]
Mondello, P.; Mian, M.; Aloisi, C.; Famà, F.; Mondello, S.; Pitini, V. Cancer cachexia syndrome: pathogenesis, diagnosis, and new therapeutic options. Nutr. Cancer, 2015, 67(1), 12-26.
[http://dx.doi.org/10.1080/01635581.2015.976318] [PMID: 25513730]
[11]
Lindsey, A.M. In Semin. Oncol. Nurs; Elsevier, 1986, Vol. 2, pp. 19-29.
[12]
Tisdale, M.J. Inhibition of lipolysis and muscle protein degradation by EPA in cancer cachexia. Nutrition, 1996, 12(1)(Suppl.), S31-S33.
[http://dx.doi.org/10.1016/0899-9007(95)00066-6] [PMID: 8850217]
[13]
Laviano, A.; Meguid, M.M. Nutritional issues in cancer management. Nutrition, 1996, 12(5), 358-371.
[http://dx.doi.org/10.1016/S0899-9007(96)80061-X] [PMID: 8875522]
[14]
Argilés, J.M.; Busquets, S.; Stemmler, B.; López-Soriano, F. J. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer, 2014, 14(11), 754-762.
[http://dx.doi.org/10.1038/nrc3829] [PMID: 25291291]
[15]
Bing, C.; Bao, Y.; Jenkins, J.; Sanders, P.; Manieri, M.; Cinti, S.; Tisdale, M.J.; Trayhurn, P. Zinc-α2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2500-2505.
[http://dx.doi.org/10.1073/pnas.0308647100] [PMID: 14983038]
[16]
Russell, S.T.; Tisdale, M.J. The role of glucocorticoids in the induction of zinc-α2-glycoprotein expression in adipose tissue in cancer cachexia. Br. J. Cancer, 2005, 92(5), 876-881.
[http://dx.doi.org/10.1038/sj.bjc.6602404] [PMID: 15714206]
[17]
Tisdale, M.J. Zinc-α2-glycoprotein in cachexia and obesity. Curr. Opin. Support. Palliat. Care, 2009, 3(4), 288-293.
[http://dx.doi.org/10.1097/SPC.0b013e328331c897] [PMID: 19823091]
[18]
Cabassi, A.; Tedeschi, S. Zinc-α2-glycoprotein as a marker of fat catabolism in humans. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(3), 267-271.
[http://dx.doi.org/10.1097/MCO.0b013e32835f816c] [PMID: 23448999]
[19]
Tisdale, M.J. Catabolic mediators of cancer cachexia. Curr. Opin. Support. Palliat. Care, 2008, 2(4), 256-261.
[http://dx.doi.org/10.1097/SPC.0b013e328319d7fa] [PMID: 19069310]
[20]
Wang, Q.; Lu, J-B.; Wu, B.; Hao, L-Y. Expression and clinicopathologic significance of proteolysis-inducing factor in non-small-cell lung cancer: an immunohistochemical analysis. Clin. Lung Cancer, 2010, 11(5), 346-351.
[http://dx.doi.org/10.3816/CLC.2010.n.044] [PMID: 20837461]
[21]
Mirza, K.A.; Wyke, S.M.; Tisdale, M.J. Attenuation of muscle atrophy by an N-terminal peptide of the receptor for proteolysis-inducing factor (PIF). Br. J. Cancer, 2011, 105(1), 83-88.
[http://dx.doi.org/10.1038/bjc.2011.216] [PMID: 21673682]
[22]
Mirza, K.A.; Tisdale, M.J. Role of Ca2+ in proteolysis-inducing factor (PIF)-induced atrophy of skeletal muscle. Cell. Signal., 2012, 24(11), 2118-2122.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.016] [PMID: 22820507]
[23]
Lokireddy, S.; Wijesoma, I.W.; Bonala, S.; Wei, M.; Sze, S.K.; McFarlane, C.; Kambadur, R.; Sharma, M. Myostatin is a novel tumoral factor that induces cancer cachexia. Biochem. J., 2012, 446(1), 23-36.
[http://dx.doi.org/10.1042/BJ20112024] [PMID: 22621320]
[24]
MacKenzie, M.G.; Hamilton, D.L.; Pepin, M.; Patton, A.; Baar, K. Inhibition of myostatin signaling through Notch activation following acute resistance exercise. PLoS One, 2013, 8(7)e68743
[http://dx.doi.org/10.1371/journal.pone.0068743] [PMID: 23844238]
[25]
Li, Y-P.; Reid, M.B. NF-kappaB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(4), R1165-R1170.
[http://dx.doi.org/10.1152/ajpregu.2000.279.4.R1165] [PMID: 11003979]
[26]
Ladner, K.J.; Caligiuri, M.A.; Guttridge, D.C. Tumor necrosis factor-regulated biphasic activation of NF-κ B is required for cytokine-induced loss of skeletal muscle gene products. J. Biol. Chem., 2003, 278(4), 2294-2303.
[http://dx.doi.org/10.1074/jbc.M207129200] [PMID: 12431991]
[27]
Di Marco, S.; Mazroui, R.; Dallaire, P.; Chittur, S.; Tenenbaum, S.A.; Radzioch, D.; Marette, A.; Gallouzi, I-E. NF-κ B-mediated MyoD decay during muscle wasting requires nitric oxide synthase mRNA stabilization, HuR protein, and nitric oxide release. Mol. Cell. Biol., 2005, 25(15), 6533-6545.
[http://dx.doi.org/10.1128/MCB.25.15.6533-6545.2005] [PMID: 16024790]
[28]
Guttridge, D.C.; Mayo, M.W.; Madrid, L.V.; Wang, C-Y.; Baldwin, A.S. Jr. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science, 2000, 289(5488), 2363-2366.
[http://dx.doi.org/10.1126/science.289.5488.2363] [PMID: 11009425]
[29]
Liu, Y.; Chakroun, I.; Yang, D.; Horner, E.; Liang, J.; Aziz, A.; Chu, A.; De Repentigny, Y.; Dilworth, F.J.; Kothary, R.; Blais, A. Six1 regulates MyoD expression in adult muscle progenitor cells. PLoS One, 2013, 8(6)e67762
[http://dx.doi.org/10.1371/journal.pone.0067762] [PMID: 23840772]
[30]
Fermoselle, C.; García-Arumí, E.; Puig-Vilanova, E.; Andreu, A.L.; Urtreger, A.J.; de Kier Joffé, E.D.B.; Tejedor, A.; Puente-Maestu, L.; Barreiro, E. Mitochondrial dysfunction and therapeutic approaches in respiratory and limb muscles of cancer cachectic mice. Exp. Physiol., 2013, 98(9), 1349-1365.
[http://dx.doi.org/10.1113/expphysiol.2013.072496] [PMID: 23625954]
[31]
Judge, A.R.; Koncarevic, A.; Hunter, R.B.; Liou, H-C.; Jackman, R.W.; Kandarian, S.C. Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy. Am. J. Physiol. Cell Physiol., 2007, 292(1), C372-C382.
[http://dx.doi.org/10.1152/ajpcell.00293.2006] [PMID: 16928772]
[32]
Jackman, R.W.; Cornwell, E.W.; Wu, C.L.; Kandarian, S.C. Nuclear factor-κB signalling and transcriptional regulation in skeletal muscle atrophy. Exp. Physiol., 2013, 98(1), 19-24.
[http://dx.doi.org/10.1113/expphysiol.2011.063321] [PMID: 22848079]
[33]
Bar-Shai, M.; Reznick, A.Z. Peroxynitrite induces an alternative NF-κB activation pathway in L8 rat myoblasts. Antioxid. & Redox Signal., 2006, 8(3-4), 639-652.
[http://dx.doi.org/10.1089/ars.2006.8.639] [PMID: 16677107]
[34]
Bar-Shai, M.; Reznick, A.Z. Reactive nitrogen species induce nuclear factor-kappaB-mediated protein degradation in skeletal muscle cells. Free Radic. Biol. Med., 2006, 40(12), 2112-2125.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.02.009] [PMID: 16785025]
[35]
Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer, 2014, 14(11), 709-721.
[http://dx.doi.org/10.1038/nrc3803] [PMID: 25342630]
[36]
Block, K.; Gorin, Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat. Rev. Cancer, 2012, 12(9), 627-637.
[http://dx.doi.org/10.1038/nrc3339] [PMID: 22918415]
[37]
Hole, P.S.; Darley, R.L.; Tonks, A. Do reactive oxygen species play a role in myeloid leukemias? Blood, 2011, 117(22), 5816-5826.
[http://dx.doi.org/10.1182/blood-2011-01-326025] [PMID: 21398578]
[38]
Suzuki, H.; Asakawa, A.; Amitani, H.; Nakamura, N.; Inui, A. Cancer cachexia--pathophysiology and management. J. Gastroenterol., 2013, 48(5), 574-594.
[http://dx.doi.org/10.1007/s00535-013-0787-0] [PMID: 23512346]
[39]
Assi, M.; Derbré, F.; Lefeuvre-Orfila, L.; Rébillard, A. Antioxidant supplementation accelerates cachexia development by promoting tumor growth in C26 tumor-bearing mice. Free Radic. Biol. Med., 2016, 91, 204-214.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.019] [PMID: 26708754]
[40]
Del Fabbro, E.; Hui, D.; Nooruddin, Z.I.; Dalal, S.; Dev, R.; Freer, G.; Roberts, L.; Palmer, J.L.; Bruera, E. Associations among hypogonadism, C-reactive protein, symptom burden, and survival in male cancer patients with cachexia: a preliminary report. J. Pain Symptom Manage., 2010, 39(6), 1016-1024.
[http://dx.doi.org/10.1016/j.jpainsymman.2009.09.021] [PMID: 20457506]
[41]
Garcia, J.M.; Li, H.; Mann, D.; Epner, D.; Hayes, T.G.; Marcelli, M.; Cunningham, G.R. Hypogonadism in male patients with cancer. Cancer, 2006, 106(12), 2583-2591.
[http://dx.doi.org/10.1002/cncr.21889] [PMID: 16688773]
[42]
Ali, S.; Chen, J.A.; Garcia, J.M. Clinical development of ghrelin axis-derived molecules for cancer cachexia treatment. Curr. Opin. Support. Palliat. Care, 2013, 7(4), 368-375.
[http://dx.doi.org/10.1097/SPC.0000000000000012] [PMID: 24145681]
[43]
Batista, M.L., Jr; Peres, S.B.; McDonald, M.E.; Alcântara, P.S.; Olivan, M.; Otoch, J.P.; Farmer, S.R.; Seelaender, M. Adipose tissue inflammation and cancer cachexia: possible role of nuclear transcription factors. Cytokine, 2012, 57(1), 9-16.
[http://dx.doi.org/10.1016/j.cyto.2011.10.008] [PMID: 22099872]
[44]
Plata-Salaman, C.R. Academic Press; , 2001.
[45]
Quinten, C.; Coens, C.; Mauer, M.; Comte, S.; Sprangers, M.A.; Cleeland, C.; Osoba, D.; Bjordal, K.; Bottomley, A. Baseline quality of life as a prognostic indicator of survival: a meta-analysis of individual patient data from EORTC clinical trials. Lancet Oncol., 2009, 10(9), 865-871.
[http://dx.doi.org/10.1016/S1470-2045(09)70200-1] [PMID: 19695956]
[46]
Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; Davis, M.; Muscaritoli, M.; Ottery, F.; Radbruch, L.; Ravasco, P.; Walsh, D.; Wilcock, A.; Kaasa, S.; Baracos, V.E. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol., 2011, 12(5), 489-495.
[http://dx.doi.org/10.1016/S1470-2045(10)70218-7] [PMID: 21296615]
[47]
Mantovani, G.; Madeddu, C.; Macciò, A.; Gramignano, G.; Lusso, M.R.; Massa, E.; Astara, G.; Serpe, R. Cancer-related anorexia/cachexia syndrome and oxidative stress: an innovative approach beyond current treatment. Cancer Epidemiol. Biomarkers Prev., 2004, 13(10), 1651-1659.
[PMID: 15466983]
[48]
Sukhanov, S.; Semprun-Prieto, L.; Yoshida, T.; Michael Tabony, A.; Higashi, Y.; Galvez, S.; Delafontaine, P. Angiotensin II, oxidative stress and skeletal muscle wasting. Am. J. Med. Sci., 2011, 342(2), 143-147.
[http://dx.doi.org/10.1097/MAJ.0b013e318222e620] [PMID: 21747283]
[49]
Barreiro, E.; de la Puente, B.; Busquets, S.; López-Soriano, F.J.; Gea, J.; Argilés, J.M. Both oxidative and nitrosative stress are associated with muscle wasting in tumour-bearing rats. FEBS Lett., 2005, 579(7), 1646-1652.
[http://dx.doi.org/10.1016/j.febslet.2005.02.017] [PMID: 15757655]
[50]
Powers, S.K.; Kavazis, A.N.; DeRuisseau, K.C. Mechanisms of disuse muscle atrophy: role of oxidative stress. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, 288(2), R337-R344.
[http://dx.doi.org/10.1152/ajpregu.00469.2004] [PMID: 15637170]
[51]
McClung, J.M.; Judge, A.R.; Powers, S.K.; Yan, Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am. J. Physiol. Cell Physiol., 2010, 298(3), C542-C549.
[http://dx.doi.org/10.1152/ajpcell.00192.2009] [PMID: 19955483]
[52]
Fukawa, T.; Yan-Jiang, B.; Kanayama, H-O.; Teh, B.; Shyh-Chang, N. Transcriptomic-metabolomic profiling revealed that fatty acid oxidation-induced stress causes cancer Cachexia. Eur. Urol. Suppl., 2017, 16(3), e1487-e1488.
[http://dx.doi.org/10.1016/S1569-9056(17)30906-5]
[53]
Gomes-Marcondes, M.C.C.; Tisdale, M.J. Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett., 2002, 180(1), 69-74.
[http://dx.doi.org/10.1016/S0304-3835(02)00006-X] [PMID: 11911972]
[54]
Laviano, A.; Meguid, M.M.; Preziosa, I.; Rossi Fanelli, F. Oxidative stress and wasting in cancer. Curr. Opin. Clin. Nutr. Metab. Care, 2007, 10(4), 449-456.
[http://dx.doi.org/10.1097/MCO.0b013e328122db94] [PMID: 17563463]
[55]
Puig-Vilanova, E.; Rodriguez, D.A.; Lloreta, J.; Ausin, P.; Pascual-Guardia, S.; Broquetas, J.; Roca, J.; Gea, J.; Barreiro, E. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic. Biol. Med., 2015, 79, 91-108.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.006] [PMID: 25464271]
[56]
Chacon-Cabrera, A.; Mateu-Jimenez, M.; Langohr, K.; Fermoselle, C.; García-Arumí, E.; Andreu, A.L.; Yelamos, J.; Barreiro, E. Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype. J. Cell. Physiol., 2017, 232(12), 3744-3761.
[http://dx.doi.org/10.1002/jcp.25851] [PMID: 28177129]
[57]
Deminice, R.; Cella, P.S.; Padilha, C.S.; Borges, F.H.; da Silva, L.E.C.M.; Campos-Ferraz, P.L.; Jordao, A.A.; Robinson, J.L.; Bertolo, R.F.; Cecchini, R.; Guarnier, F.A. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats. Amino Acids, 2016, 48(8), 2015-2024.
[http://dx.doi.org/10.1007/s00726-016-2172-9] [PMID: 26781304]
[58]
Fukawa, T.; Yan-Jiang, B.C.; Min-Wen, J.C.; Jun-Hao, E.T.; Huang, D.; Qian, C-N.; Ong, P.; Li, Z.; Chen, S.; Mak, S.Y.; Lim, W.J.; Kanayama, H.O.; Mohan, R.E.; Wang, R.R.; Lai, J.H.; Chua, C.; Ong, H.S.; Tan, K.K.; Ho, Y.S.; Tan, I.B.; Teh, B.T.; Shyh-Chang, N. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat. Med., 2016, 22(6), 666-671.
[http://dx.doi.org/10.1038/nm.4093] [PMID: 27135739]
[59]
De Waele, E.; Mattens, S.; Honoré, P.M.; Spapen, H.; De Grève, J.; Pen, J.J. Nutrition therapy in cachectic cancer patients. The Tight Caloric Control (TiCaCo) pilot trial. Appetite, 2015, 91, 298-301.
[http://dx.doi.org/10.1016/j.appet.2015.04.049] [PMID: 25912786]
[60]
De Waele, E.; Nguyen, D.; De Bondt, K.; La Meir, M.; Diltoer, M.; Honoré, P.M.; Spapen, H.; Pen, J.J. The CoCoS trial: Caloric Control in Cardiac Surgery patients promotes survival, an interventional trial with retrospective control. Clin. Nutr., 2017.
[http://dx.doi.org/10.1016/j.clnu.2017.03.007] [PMID: 28365080]
[61]
Yun, C-H.; Yang, J.S.; Kang, S-S.; Yang, Y.; Cho, J.H.; Son, C.G.; Han, S.H. NF-kappaB signaling pathway, not IFN-β/STAT1, is responsible for the selenium suppression of LPS-induced nitric oxide production. Int. Immunopharmacol., 2007, 7(9), 1192-1198.
[http://dx.doi.org/10.1016/j.intimp.2007.05.002] [PMID: 17630198]
[62]
Stahle, J.A.; Vunta, H.; Channa Reddy, C.; Sandeep Prabhu, K. Regulation of expression of apolipoprotein A-I by selenium status in human liver hepatoblastoma cells. Eur. J. Nutr., 2009, 48(5), 283-290.
[http://dx.doi.org/10.1007/s00394-009-0012-3] [PMID: 19294445]
[63]
Yang, H.; Jia, X.; Chen, X.; Yang, C.S.; Li, N. Time-selective chemoprevention of vitamin E and selenium on esophageal carcinogenesis in rats: the possible role of nuclear factor kappaB signaling pathway. Int. J. Cancer, 2012, 131(7), 1517-1527.
[http://dx.doi.org/10.1002/ijc.27423] [PMID: 22223226]
[64]
Dröge, W.; Schulze-Osthoff, K.; Mihm, S.; Galter, D.; Schenk, H.; Eck, H.P.; Roth, S.; Gmünder, H. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J., 1994, 8(14), 1131-1138.
[http://dx.doi.org/10.1096/fasebj.8.14.7958618] [PMID: 7958618]
[65]
Chen, Y-C.; Prabhu, K.S.; Mastro, A.M. Is selenium a potential treatment for cancer metastasis? Nutrients, 2013, 5(4), 1149-1168.
[http://dx.doi.org/10.3390/nu5041149] [PMID: 23567478]
[66]
Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; Parsons, J.K.; Bearden, J.D., III; Crawford, E.D.; Goodman, G.E.; Claudio, J.; Winquist, E.; Cook, E.D.; Karp, D.D.; Walther, P.; Lieber, M.M.; Kristal, A.R.; Darke, A.K.; Arnold, K.B.; Ganz, P.A.; Santella, R.M.; Albanes, D.; Taylor, P.R.; Probstfield, J.L.; Jagpal, T.J.; Crowley, J.J.; Meyskens, F.L., Jr; Baker, L.H.; Coltman, C.A., Jr Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2009, 301(1), 39-51.
[http://dx.doi.org/10.1001/jama.2008.864] [PMID: 19066370]
[67]
Klein, E.A.; Thompson, I.M., Jr; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; Karp, D.D.; Lieber, M.M.; Walther, P.J.; Klotz, L.; Parsons, J.K.; Chin, J.L.; Darke, A.K.; Lippman, S.M.; Goodman, G.E.; Meyskens, F.L., Jr; Baker, L.H. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2011, 306(14), 1549-1556.
[http://dx.doi.org/10.1001/jama.2011.1437] [PMID: 21990298]
[68]
Vinceti, M.; Dennert, G.; Crespi, C.M.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Del Giovane, C. Selenium for preventing cancer. Cochrane Database Syst. Rev., 2014, (3)CD005195
[PMID: 24683040]
[69]
Rocourt, C.R.; Cheng, W-H. Selenium supranutrition: are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients, 2013, 5(4), 1349-1365.
[http://dx.doi.org/10.3390/nu5041349] [PMID: 23603996]
[70]
Wang, H.; Li, T-L.; Hsia, S.; Su, I-L.; Chan, Y-L.; Wu, C-J. Skeletal muscle atrophy is attenuated in tumor-bearing mice under chemotherapy by treatment with fish oil and selenium. Oncotarget, 2015, 6(10), 7758-7773.
[http://dx.doi.org/10.18632/oncotarget.3483] [PMID: 25797259]
[71]
Barreto, R.; Waning, D.L.; Gao, H.; Liu, Y.; Zimmers, T.A.; Bonetto, A. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget, 2016, 7(28), 43442-43460.
[http://dx.doi.org/10.18632/oncotarget.9779] [PMID: 27259276]
[72]
Tapiero, H.; Townsend, D.M.; Tew, K.D. The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother., 2003, 57(3-4), 134-144.
[http://dx.doi.org/10.1016/S0753-3322(03)00035-0] [PMID: 12818475]
[73]
Schrauzer, G.N. Anticarcinogenic effects of selenium. Cell. Mol. Life Sci., 2000, 57(13-14), 1864-1873.
[http://dx.doi.org/10.1007/PL00000668] [PMID: 11215513]
[74]
Molanouri Shamsi, M.; Chekachak, S.; Soudi, S.; Quinn, L.S.; Ranjbar, K.; Chenari, J.; Yazdi, M.H.; Mahdavi, M. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia. Cytokine, 2017, 90, 100-108.
[http://dx.doi.org/10.1016/j.cyto.2016.11.005] [PMID: 27863332]
[75]
Danielsson, B.R.; Danielson, M.; Khayat, A.; Wide, M. Comparative embryotoxicity of selenite and selenate: uptake in murine embryonal and fetal tissues and effects on blastocysts and embryonic cells in vitro. Toxicology, 1990, 63(2), 123-136.
[http://dx.doi.org/10.1016/0300-483X(90)90037-H] [PMID: 2169079]
[76]
Reid, M.E.; Stratton, M.S.; Lillico, A.J.; Fakih, M.; Natarajan, R.; Clark, L.C.; Marshall, J.R. A report of high-dose selenium supplementation: response and toxicities. J. Trace Elem. Med. Biol., 2004, 18(1), 69-74.
[http://dx.doi.org/10.1016/j.jtemb.2004.03.004] [PMID: 15487766]
[77]
Wei, J.; Zeng, C.; Gong, Q.Y.; Yang, H.B.; Li, X.X.; Lei, G.H.; Yang, T.B. The association between dietary selenium intake and diabetes: a cross-sectional study among middle-aged and older adults. Nutr. J., 2015, 14(1), 18.
[http://dx.doi.org/10.1186/s12937-015-0007-2] [PMID: 25880386]
[78]
Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev., 2018, 1CD005195
[http://dx.doi.org/10.1002/14651858.CD005195.pub4] [PMID: 29376219]
[79]
Cutando, A.; López-Valverde, A.; Arias-Santiago, S.D.E.; Vicente, J.D.E.; Diego, R.G. Role of melatonin in cancer treatment. Anticancer Res., 2012, 32(7), 2747-2753.
[PMID: 22753734]
[80]
Lissoni, P.; Paolorossi, F.; Tancini, G.; Barni, S.; Ardizzoia, A.; Brivio, F.; Zubelewicz, B.; Chatikhine, V. Is there a role for melatonin in the treatment of neoplastic cachexia? Eur. J. Cancer, 1996, 32A(8), 1340-1343.
[http://dx.doi.org/10.1016/0959-8049(96)00136-0] [PMID: 8869096]
[81]
Blask, D.E.; Dauchy, R.T.; Dauchy, E.M.; Mao, L.; Hill, S.M.; Greene, M.W.; Belancio, V.P.; Sauer, L.A.; Davidson, L. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention. PLoS One, 2014, 9(8)e102776
[http://dx.doi.org/10.1371/journal.pone.0102776] [PMID: 25099274]
[82]
Dauchy, R.T.; Xiang, S.; Mao, L.; Brimer, S.; Wren, M.A.; Yuan, L.; Anbalagan, M.; Hauch, A.; Frasch, T.; Rowan, B.G.; Blask, D.E.; Hill, S.M. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res., 2014, 74(15), 4099-4110.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3156] [PMID: 25062775]
[83]
Fischer, T.W.; Kleszczyński, K.; Hardkop, L.H.; Kruse, N.; Zillikens, D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2′-deoxyguanosine) in ex vivo human skin. J. Pineal Res., 2013, 54(3), 303-312.
[http://dx.doi.org/10.1111/jpi.12018] [PMID: 23110400]
[84]
Zhang, H.; Liu, D.; Wang, X.; Chen, X.; Long, Y.; Chai, W.; Zhou, X.; Rui, X.; Zhang, Q.; Wang, H.; Yang, Q. Melatonin improved rat cardiac mitochondria and survival rate in septic heart injury. J. Pineal Res., 2013, 55(1), 1-6.
[http://dx.doi.org/10.1111/jpi.12033] [PMID: 23330702]
[85]
Yang, Y.; Duan, W.; Jin, Z.; Yi, W.; Yan, J.; Zhang, S.; Wang, N.; Liang, Z.; Li, Y.; Chen, W.; Yi, D.; Yu, S. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J. Pineal Res., 2013, 55(3), 275-286.
[http://dx.doi.org/10.1111/jpi.12070] [PMID: 23796350]
[86]
Parameyong, A.; Charngkaew, K.; Govitrapong, P.; Chetsawang, B. Melatonin attenuates methamphetamine-induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells. J. Pineal Res., 2013, 55(3), 313-323.
[http://dx.doi.org/10.1111/jpi.12078] [PMID: 23889188]
[87]
Huang, W-Y.; Jou, M-J.; Peng, T.I. mtDNA T8993G mutation-induced F1F0-ATP synthase defect augments mitochondrial dysfunction associated with hypoxia/reoxygenation: the protective role of melatonin. PLoS One, 2013, 8(11)e81546
[http://dx.doi.org/10.1371/journal.pone.0081546] [PMID: 24312318]
[88]
Chen, J.; Wang, L.; Wu, C.; Hu, Q.; Gu, C.; Yan, F.; Li, J.; Yan, W.; Chen, G. Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J. Pineal Res., 2014, 56(1), 12-19.
[http://dx.doi.org/10.1111/jpi.12086] [PMID: 24033352]
[89]
Jimenéz-Aranda, A.; Fernández-Vázquez, G. Mohammad A-Serrano, M.; Reiter, R.J.; Agil, A.; Agil, A. Melatonin improves mitochondrial function in inguinal white adipose tissue of Zücker diabetic fatty rats. J. Pineal Res., 2014, 57(1), 103-109.
[http://dx.doi.org/10.1111/jpi.12147] [PMID: 24867433]
[90]
Chahbouni, M.; Escames, G.; Venegas, C.; Sevilla, B.; García, J.A.; López, L.C.; Muñoz-Hoyos, A.; Molina-Carballo, A.; Acuña-Castroviejo, D. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J. Pineal Res., 2010, 48(3), 282-289.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00752.x] [PMID: 20210854]
[91]
Wang, W.Z.; Fang, X-H.; Stephenson, L.L.; Zhang, X.; Khiabani, K.T.; Zamboni, W.A. Melatonin attenuates I/R-induced mitochondrial dysfunction in skeletal muscle. J. Surg. Res., 2011, 171(1), 108-113.
[http://dx.doi.org/10.1016/j.jss.2010.01.019] [PMID: 20421117]
[92]
Sobhani, R.; Masoudpour, H.; Akbari, M.; Suzangar, H.R. AleSaeidio, S.; Adibi, S.; Khademi, S.A.; Khademi, E.F.; Sobhani, F. The histobiochemical effects of melatonin on ischemia reperfusion-related injuries in vascular trauma of lower limbs. Ann. Ital. Chir., 2012, 83(1), 49-54.
[PMID: 22352217]
[93]
Drobnik, J.; Olczak, S.; Owczarek, K.; Hrabec, Z.; Hrabec, E. Melatonin augments expression of the procollagen α1 (I) and α1 (III) genes in the infarcted heart scar of pinealectomized rats. Connect. Tissue Res., 2010, 51(6), 491-496.
[http://dx.doi.org/10.3109/03008201003686966] [PMID: 20388018]
[94]
Drobnik, J.; Slotwinska, D.; Olczak, S.; Tosik, D.; Pieniazek, A.; Matczak, K.; Koceva-Chyla, A.; Szczepanowska, A. Pharmacological doses of melatonin reduce the glycosaminoglycan level within the infarcted heart scar. J. Physiol. Pharmacol., 2011, 62(1), 29-35.
[PMID: 21451207]
[95]
Srinivasan, V.; Mohamed, M.; Kato, H. Melatonin in bacterial and viral infections with focus on sepsis: a review. Recent Pat. Endocr. Metab. Immune Drug Discov., 2012, 6(1), 30-39.
[http://dx.doi.org/10.2174/187221412799015317] [PMID: 22264213]
[96]
Srinivasan, V.; Pandi-Perumal, S.; Brzezinski, A.; Bhatnagar, K.; Cardinali, D.
[97]
Kılınçel, Ö.; Çalışkan, E.; Şahin, İ.; Öztürk, C.E.; Kılıç, N.; Öksüz, Ş. The effect of melatonin on antifungal susceptibility in planktonic and biofilm forms of Candida strains isolated from clinical samples. Med. Mycol., 2019, 57(1), 45-51.
[http://dx.doi.org/10.1093/mmy/myx157] [PMID: 29390164]
[98]
Boga, J.A.; Coto-Montes, A.; Rosales-Corral, S.A.; Tan, D.X.; Reiter, R.J. Beneficial actions of melatonin in the management of viral infections: a new use for this “molecular handyman”? Rev. Med. Virol., 2012, 22(5), 323-338.
[http://dx.doi.org/10.1002/rmv.1714] [PMID: 22511571]
[99]
Provinciali, M.; Di Stefano, G.; Bulian, D.; Stronati, S.; Fabris, N. Long-term melatonin supplementation does not recover the impairment of natural killer cell activity and lymphocyte proliferation in aging mice. Life Sci., 1997, 61(9), 857-864.
[http://dx.doi.org/10.1016/S0024-3205(97)00587-0] [PMID: 9284078]
[100]
Ma, H.; Wang, Z.; Hu, L.; Zhang, S.; Zhao, C.; Yang, H.; Wang, H.; Fang, Z.; Wu, L.; Chen, X. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas. Biochem. Biophys. Res. Commun., 2018, 496(4), 1322-1330.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.010] [PMID: 29408377]
[101]
Andersen, L.P.H.; Gögenur, I.; Rosenberg, J.; Reiter, R.J. The safety of melatonin in humans. Clin. Drug Investig., 2016, 36(3), 169-175.
[http://dx.doi.org/10.1007/s40261-015-0368-5] [PMID: 26692007]
[102]
Vigoré, L.; Messina, G.; Brivio, F.; Fumagalli, L. Rovelli, F.; DI Fede, G.; Lissoni, P. Psychoneuroendocrine modulation of regulatory T lymphocyte system: in vivo and in vitro effects of the pineal immunomodulating hormone melatonin. In Vivo, 2010, 24(5), 787-789.
[PMID: 20952751]
[103]
Ochoa, J.J.; Díaz-Castro, J.; Kajarabille, N.; García, C.; Guisado, I.M.; De Teresa, C.; Guisado, R. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J. Pineal Res., 2011, 51(4), 373-380.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00899.x] [PMID: 21615492]
[104]
Park, J.H.; Chung, E.J.; Kwon, H.J.; Im, S.S.; Lim, J.G.; Song, D.K. Protective effect of melatonin on TNF-α-induced muscle atrophy in L6 myotubes. J. Pineal Res., 2013, 54(4), 417-425.
[http://dx.doi.org/10.1111/jpi.12036] [PMID: 23278522]
[105]
Innominato, P.F.; Lim, A.S.; Palesh, O.; Clemons, M.; Trudeau, M.; Eisen, A.; Wang, C.; Kiss, A.; Pritchard, K.I.; Bjarnason, G.A. The effect of melatonin on sleep and quality of life in patients with advanced breast cancer. Support. Care Cancer, 2016, 24(3), 1097-1105.
[http://dx.doi.org/10.1007/s00520-015-2883-6] [PMID: 26260726]
[106]
Anisimov, V.N.; Popovich, I.G.; Zabezhinski, M.A.; Anisimov, S.V.; Vesnushkin, G.M.; Vinogradova, I.A. Melatonin as antioxidant, geroprotector and anticarcinogen. Biochimica et Biophysica Acta (BBA)-. Bioenergetics, 2006, 1757(5-6), 573-589.
[http://dx.doi.org/10.1016/j.bbabio.2006.03.012] [PMID: 16678784]
[107]
Reiter, R.J.; Tan, D.X.; Rosales-Corral, S.; Galano, A.; Zhou, X.J.; Xu, B. Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules, 2018, 23(2), 509.
[http://dx.doi.org/10.3390/molecules23020509] [PMID: 29495303]
[108]
Del Fabbro, E.; Dev, R.; Hui, D.; Palmer, L.; Bruera, E. Effects of melatonin on appetite and other symptoms in patients with advanced cancer and cachexia: A double-blind placebo-controlled trial. J. Clin. Oncol., 2013, 31(10), 1271-1276.
[http://dx.doi.org/10.1200/JCO.2012.43.6766] [PMID: 23439759]
[109]
Werner, K.; Küllenberg de Gaudry, D.; Taylor, L.A.; Keck, T.; Unger, C.; Hopt, U.T.; Massing, U. Dietary supplementation with n-3-fatty acids in patients with pancreatic cancer and cachexia: marine phospholipids versus fish oil - a randomized controlled double-blind trial. Lipids Health Dis., 2017, 16(1), 104.
[http://dx.doi.org/10.1186/s12944-017-0495-5] [PMID: 28578704]
[110]
Venkatachalam, S.; Kuppusamy, P.; Kuppusamy, B.; Dhanapal, S. The potency of essential nutrient taurine on boosting the antioxidant status and chemopreventive effect against benzo (a) pyrene induced experimental lung cancer. Biomedicine & Preventive Nutrition, 2014, 4(2), 251-255.
[http://dx.doi.org/10.1016/j.bionut.2013.09.006]
[111]
Christophersen, O.A. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. Microb. Ecol. Health Dis., 2012, 23(1), 14787.
[http://dx.doi.org/10.3402/mehd.v23i0.14787] [PMID: 23990836]
[112]
Haug, A.; Graham, R.D.; Christophersen, O.A.; Lyons, G.H. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis., 2007, 19(4), 209-228.
[http://dx.doi.org/10.1080/08910600701698986] [PMID: 18833333]
[113]
Tallon, M.J.; Harris, R.C.; Maffulli, N.; Tarnopolsky, M.A. Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology, 2007, 8(2), 129-137.
[http://dx.doi.org/10.1007/s10522-006-9038-6] [PMID: 16967207]
[114]
Tallon, M.J.; Harris, R.C.; Boobis, L.H.; Fallowfield, J.L.; Wise, J.A. The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. J. Strength Cond. Res., 2005, 19(4), 725-729.
[http://dx.doi.org/10.1519/041018.1] [PMID: 16287364]
[115]
Mora, L.; Sentandreu, M.Á.; Toldrá, F. Contents of creatine, creatinine and carnosine in porcine muscles of different metabolic types. Meat Sci., 2008, 79(4), 709-715.
[http://dx.doi.org/10.1016/j.meatsci.2007.11.002] [PMID: 22063033]
[116]
Pierno, S.; Liantonio, A.; Camerino, G.M.; De Bellis, M.; Cannone, M.; Gramegna, G.; Scaramuzzi, A.; Simonetti, S.; Nicchia, G.P.; Basco, D.; Svelto, M.; Desaphy, J.F.; Camerino, D.C. Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat. Amino Acids, 2012, 43(1), 431-445.
[http://dx.doi.org/10.1007/s00726-011-1099-4] [PMID: 21986958]
[117]
Jong, C.J.; Azuma, J.; Schaffer, S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids, 2012, 42(6), 2223-2232.
[http://dx.doi.org/10.1007/s00726-011-0962-7] [PMID: 21691752]
[118]
Heidari, R.; Ghanbarinejad, V.; Mohammadi, H.; Ahmadi, A.; Ommati, M.M.; Abdoli, N.; Aghaei, F.; Esfandiari, A.; Azarpira, N.; Niknahad, H. Mitochondria protection as a mechanism underlying the hepatoprotective effects of glycine in cholestatic mice. Biomed. Pharmacother., 2018, 97, 1086-1095.
[http://dx.doi.org/10.1016/j.biopha.2017.10.166] [PMID: 29136945]
[119]
Desai, T.K.; Maliakkal, J.; Kinzie, J.L.; Ehrinpreis, M.N.; Luk, G.D.; Cejka, J. Taurine deficiency after intensive chemotherapy and/or radiation. Am. J. Clin. Nutr., 1992, 55(3), 708-711.
[http://dx.doi.org/10.1093/ajcn/55.3.708] [PMID: 1550047]
[120]
Gray, G.E.; Landel, A.M.; Meguid, M.M. Taurine-supplemented total parenteral nutrition and taurine status of malnourished cancer patients. Nutrition, 1994, 10(1), 11-15.
[PMID: 8199416]
[121]
Lambert, I.H.; Kristensen, D.M.; Holm, J.B.; Mortensen, O.H. Physiological role of taurine--from organism to organelle. Acta Physiol. (Oxf.), 2015, 213(1), 191-212.
[http://dx.doi.org/10.1111/apha.12365] [PMID: 25142161]
[122]
Ørtenblad, N.; Young, J.F.; Oksbjerg, N.; Nielsen, J.H.; Lambert, I.H. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells. Am. J. Physiol. Cell Physiol., 2003, 284(6), C1362-C1373.
[http://dx.doi.org/10.1152/ajpcell.00287.2002] [PMID: 12519746]
[123]
Kücükakin, B.; Gögenur, I.; Reiter, R.J.; Rosenberg, J. Oxidative stress in relation to surgery: is there a role for the antioxidant melatonin? J. Surg. Res., 2009, 152(2), 338-347.
[http://dx.doi.org/10.1016/j.jss.2007.12.753] [PMID: 18262562]
[124]
Inoue, H.; Tani, K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ., 2014, 21(1), 39-49.
[http://dx.doi.org/10.1038/cdd.2013.84] [PMID: 23832118]
[125]
Hayes, K.C.; Pronczuk, A.; Addesa, A.E.; Stephan, Z.F. Taurine modulates platelet aggregation in cats and humans. Am. J. Clin. Nutr., 1989, 49(6), 1211-1216.
[http://dx.doi.org/10.1093/ajcn/49.6.1211] [PMID: 2729158]
[126]
Fennessy, F.M.; Moneley, D.S.; Wang, J.H.; Kelly, C.J.; Bouchier-Hayes, D.J. Taurine and vitamin C modify monocyte and endothelial dysfunction in young smokers. Circulation, 2003, 107(3), 410-415.
[http://dx.doi.org/10.1161/01.CIR.0000046447.72402.47] [PMID: 12551864]
[127]
Moloney, M.A.; Casey, R.G.; O’Donnell, D.H.; Fitzgerald, P.; Thompson, C.; Bouchier-Hayes, D.J. Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics. Diab. Vasc. Dis. Res., 2010, 7(4), 300-310.
[http://dx.doi.org/10.1177/1479164110375971] [PMID: 20667936]
[128]
Stacchiotti, A.; Rovetta, F.; Ferroni, M.; Corsetti, G.; Lavazza, A.; Sberveglieri, G.; Aleo, M.F. Taurine rescues cisplatin-induced muscle atrophy in vitro: A morphological study. Oxid. Med. Cell. Longev, 2014. 2014
[http://dx.doi.org/10.1155/2014/840951]
[129]
H.; Pfirrmann, R.W.; Frei, K., Redox-directed cancer therapeutics: Taurolidine and Piperlongumine as broadly effective antineoplastic agents. Int. J. Oncol., 2014, 45(4), 1329-1336.
[http://dx.doi.org/10.3892/ijo.2014.2566] [PMID: 25175943]
[130]
Arlt, M.J.; Walters, D.K.; Banke, I.J.; Steinmann, P.; Puskas, G.J.; Bertz, J.; Rentsch, K.M.; Ehrensperger, F.; Born, W.; Fuchs, B. The antineoplastic antibiotic taurolidine promotes lung and liver metastasis in two syngeneic osteosarcoma mouse models and exhibits severe liver toxicity. Int. J. Cancer, 2012, 131(5), E804-E812.
[http://dx.doi.org/10.1002/ijc.27378] [PMID: 22120774]
[131]
Sato, S.; Yamamoto, H.; Mukaisho, K.; Saito, S.; Hattori, T.; Yamamoto, G.; Sugihara, H. Continuous taurocholic acid exposure promotes esophageal squamous cell carcinoma progression due to reduced cell loss resulting from enhanced vascular development. PLoS One, 2014, 9(2)e88831
[http://dx.doi.org/10.1371/journal.pone.0088831] [PMID: 24551170]
[132]
Hipkiss, A.R. Carnosine and its possible roles in nutrition and health. Adv. Food Nutr. Res., 2009, 57, 87-154.
[http://dx.doi.org/10.1016/S1043-4526(09)57003-9] [PMID: 19595386]
[133]
Nagai, K.; Suda, T. [Immuno-enhancing actions of carnosine and homocarnosine] Nippon Seirigaku Zasshi, 1986, 48(11), 735-740.
[PMID: 3820123]
[134]
Chuang, C-H.; Hu, M-L. L-carnosine inhibits metastasis of SK-Hep-1 cells by inhibition of matrix metaoproteinase-9 expression and induction of an antimetastatic gene, nm23-H1. Nutr. Cancer, 2008, 60(4), 526-533.
[http://dx.doi.org/10.1080/01635580801911787] [PMID: 18584487]
[135]
Renner, C.; Zemitzsch, N.; Fuchs, B.; Geiger, K.D.; Hermes, M.; Hengstler, J.; Gebhardt, R.; Meixensberger, J.; Gaunitz, F. Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model. Mol. Cancer, 2010, 9(1), 2.
[http://dx.doi.org/10.1186/1476-4598-9-2] [PMID: 20053283]
[136]
Renner, C.; Asperger, A.; Seyffarth, A.; Meixensberger, J.; Gebhardt, R.; Gaunitz, F. Carnosine inhibits ATP production in cells from malignant glioma. Neurol. Res., 2010, 32(1), 101-105.
[http://dx.doi.org/10.1179/016164109X12518779082237] [PMID: 19909581]
[137]
Shen, Y.; Yang, J.; Li, J.; Shi, X.; Ouyang, L.; Tian, Y.; Lu, J. Carnosine inhibits the proliferation of human gastric cancer SGC-7901 cells through both of the mitochondrial respiration and glycolysis pathways. PLoS One, 2014, 9(8)e104632
[http://dx.doi.org/10.1371/journal.pone.0104632] [PMID: 25115854]
[138]
Rybakova, Y.S.; Boldyrev, A.A. Effect of carnosine and related compounds on proliferation of cultured rat pheochromocytoma PC-12 cells. Bull. Exp. Biol. Med., 2012, 154(1), 136-140.
[http://dx.doi.org/10.1007/s10517-012-1894-2] [PMID: 23330110]
[139]
Hipkiss, A.R.; Cartwright, S.P.; Bromley, C.; Gross, S.R.; Bill, R.M. Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential? Chem. Cent. J., 2013, 7(1), 38.
[http://dx.doi.org/10.1186/1752-153X-7-38] [PMID: 23442334]
[140]
Ditte, Z.; Ditte, P.; Labudova, M.; Simko, V.; Iuliano, F.; Zatovicova, M.; Csaderova, L.; Pastorekova, S.; Pastorek, J. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts. BMC Cancer, 2014, 14(1), 358.
[http://dx.doi.org/10.1186/1471-2407-14-358] [PMID: 24886661]
[141]
Gaunitz, F.; Hipkiss, A.R. Carnosine and cancer: a perspective. Amino Acids, 2012, 43(1), 135-142.
[http://dx.doi.org/10.1007/s00726-012-1271-5] [PMID: 22454085]
[142]
Schaffer, S.W.; Ballard-Croft, C.; Azuma, J.; Takahashi, K.; Kakhniashvili, D.G.; Jenkins, T.E. Shape and size changes induced by taurine depletion in neonatal cardiomyocytes. Amino Acids, 1998, 15(1-2), 135-142.
[http://dx.doi.org/10.1007/BF01345286] [PMID: 9871493]
[143]
Golubnitschaja, O.; Moenkemann, H.; Kim, K.; Mozaffari, M.S. DNA damage and expression of checkpoint genes p21(WAF1/CIP1) and 14-3-3 σ in taurine-deficient cardiomyocytes. Biochem. Pharmacol., 2003, 66(3), 511-517.
[http://dx.doi.org/10.1016/S0006-2952(03)00285-5] [PMID: 12907251]
[144]
Kerai, M.D.; Waterfield, C.J.; Kenyon, S.H.; Asker, D.S.; Timbrell, J.A. The effect of taurine depletion by β-alanine treatment on the susceptibility to ethanol-induced hepatic dysfunction in rats. Alcohol Alcohol., 2001, 36(1), 29-38.
[http://dx.doi.org/10.1093/alcalc/36.1.29] [PMID: 11139413]
[145]
Jong, C.J.; Ito, T.; Mozaffari, M.; Azuma, J.; Schaffer, S. Effect of β-alanine treatment on mitochondrial taurine level and 5-taurinomethyluridine content. J. Biomed. Sci., 2010, 17(1)(Suppl. 1), S25.
[http://dx.doi.org/10.1186/1423-0127-17-S1-S25] [PMID: 20804600]
[146]
Der-Torossian, H.; Wysong, A.; Shadfar, S.; Willis, M.S.; McDunn, J.; Couch, M.E. Metabolic derangements in the gastrocnemius and the effect of Compound A therapy in a murine model of cancer cachexia. J. Cachexia Sarcopenia Muscle, 2013, 4(2), 145-155.
[http://dx.doi.org/10.1007/s13539-012-0101-7] [PMID: 23344889]
[147]
Arner, P.; Henjes, F.; Schwenk, J.M.; Darmanis, S.; Dahlman, I.; Iresjö, B-M.; Naredi, P.; Agustsson, T.; Lundholm, K.; Nilsson, P.; Rydén, M. Circulating carnosine dipeptidase 1 associates with weight loss and poor prognosis in gastrointestinal cancer. PLoS One, 2015, 10(4)e0123566
[http://dx.doi.org/10.1371/journal.pone.0123566] [PMID: 25898255]
[148]
Folkers, K. Relevance of the biosynthesis of coenzyme Q10 and of the four bases of DNA as a rationale for the molecular causes of cancer and a therapy. Biochem. Biophys. Res. Commun., 1996, 224(2), 358-361.
[http://dx.doi.org/10.1006/bbrc.1996.1033] [PMID: 8702395]
[149]
Donnino, M.W.; Cocchi, M.N.; Salciccioli, J.D.; Kim, D.; Naini, A.B.; Buettner, C.; Akuthota, P. Coenzyme Q10 levels are low and may be associated with the inflammatory cascade in septic shock. Crit. Care, 2011, 15(4), R189.
[http://dx.doi.org/10.1186/cc10343] [PMID: 21827677]
[150]
De Luca, C.; Kharaeva, Z.; Raskovic, D.; Pastore, P.; Luci, A.; Korkina, L. Coenzyme Q(10), vitamin E, selenium, and methionine in the treatment of chronic recurrent viral mucocutaneous infections. Nutrition, 2012, 28(5), 509-514.
[http://dx.doi.org/10.1016/j.nut.2011.08.003] [PMID: 22079390]
[151]
Flowers, N.; Hartley, L.; Rees, K. Co-enzyme Q10 supplementation for the primary pre-vention of cardiovascular disease. Cochrane Database Syst. Rev., 2014, 12CD010405
[http://dx.doi.org/10.1002/14651858.CD010405] [PMID: 25474484]
[152]
Potgieter, M.; Pretorius, E.; Pepper, M.S. Primary and secondary coenzyme Q10 deficiency: the role of therapeutic supplementation. Nutr. Rev., 2013, 71(3), 180-188.
[http://dx.doi.org/10.1111/nure.12011] [PMID: 23452285]
[153]
Folkers, K. The potential of coenzyme Q 10 (NSC-140865) in cancer treatment. Cancer Chemother. Rep. 2, 1974, 4(4), 19-22.
[PMID: 4218125]
[154]
Vetvicka, V.; Vetvickova, J. Combination therapy with glucan and Coenzyme Q10 in murine experimental autoimmune disease and cancer. Anticancer Res., 2018, 38(6), 3291-3297.
[http://dx.doi.org/10.21873/anticanres.12594] [PMID: 29848676]
[155]
Roffe, L.; Schmidt, K.; Ernst, E. Efficacy of coenzyme Q10 for improved tolerability of cancer treatments: a systematic review. J. Clin. Oncol., 2004, 22(21), 4418-4424.
[http://dx.doi.org/10.1200/JCO.2004.02.034] [PMID: 15514384]
[156]
Lockwood, K.; Moesgaard, S.; Hanioka, T.; Folkers, K. Apparent partial remission of breast cancer in ‘high risk’ patients supplemented with nutritional antioxidants, essential fatty acids and coenzyme Q10. Mol. Aspects Med., 1994, 15(Suppl.), s231-s240.
[http://dx.doi.org/10.1016/0098-2997(94)90033-7] [PMID: 7752835]
[157]
Iwase, S.; Kawaguchi, T.; Yotsumoto, D.; Doi, T.; Miyara, K.; Odagiri, H.; Kitamura, K.; Ariyoshi, K.; Miyaji, T.; Ishiki, H.; Inoue, K.; Tsutsumi, C.; Sagara, Y.; Yamaguchi, T. Efficacy and safety of an amino acid jelly containing coenzyme Q10 and L-carnitine in controlling fatigue in breast cancer patients receiving chemotherapy: a multi-institutional, randomized, exploratory trial (JORTC-CAM01). Support. Care Cancer, 2016, 24(2), 637-646.
[http://dx.doi.org/10.1007/s00520-015-2824-4] [PMID: 26105516]
[158]
Daneryd, P.; Aberg, F.; Dallner, G.; Ernster, L.; Scherstén, T.; Soussi, B. Coenzymes Q9 and Q10 in skeletal and cardiac muscle in tumour-bearing exercising rats. Eur. J. Cancer, 1995, 31A(5), 760-765.
[http://dx.doi.org/10.1016/0959-8049(95)00086-X] [PMID: 7503906]
[159]
Bjørklund, G. The Adjuvant Nutritional Intervention in Cancer (ANICA) Trial. Nutr. Cancer, 2015, 67(8), 1355-1358.
[http://dx.doi.org/10.1080/01635581.2015.1085582] [PMID: 26473998]
[160]
Tafazoli, A. Coenzyme Q10 in breast cancer care. Future Oncol., 2017, 13(11), 1035-1041.
[http://dx.doi.org/10.2217/fon-2016-0547] [PMID: 28481148]
[161]
Liu, H-T.; Cheng, S-B.; Huang, Y-C.; Huang, Y-T.; Lin, P-T. Coenzyme Q10 and oxidative stress: inflammation status in hepatocellular carcinoma patients after surgery. Nutrients, 2017, 9(1), 29.
[http://dx.doi.org/10.3390/nu9010029] [PMID: 28054958]
[162]
Gonzalez, M.J. Fish oil, lipid peroxidation and mammary tumor growth. J. Am. Coll. Nutr., 1995, 14(4), 325-335.
[http://dx.doi.org/10.1080/07315724.1995.10718517] [PMID: 8568108]
[163]
Giacosa, A.; Rondanelli, M. Fish oil and treatment of cancer cachexia. Genes Nutr., 2008, 3(1), 25-28.
[http://dx.doi.org/10.1007/s12263-008-0078-1] [PMID: 18850196]
[164]
Smith, H.J.; Tisdale, M.J. Induction of apoptosis by a cachectic-factor in murine myotubes and inhibition by eicosapentaenoic acid. Apoptosis, 2003, 8(2), 161-169.
[http://dx.doi.org/10.1023/A:1022970609579] [PMID: 12766476]
[165]
Cerchietti, L.C.; Navigante, A.H.; Castro, M.A. Effects of eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil and preferential Cox-2 inhibition on systemic syndromes in patients with advanced lung cancer. Nutr. Cancer, 2007, 59(1), 14-20.
[http://dx.doi.org/10.1080/01635580701365068] [PMID: 17927497]
[166]
Barber, M.D.; Ross, J.A.; Voss, A.C.; Tisdale, M.J.; Fearon, K.C. The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br. J. Cancer, 1999, 81(1), 80-86.
[http://dx.doi.org/10.1038/sj.bjc.6690654] [PMID: 10487616]
[167]
Hudson, E.A.; Tisdale, M.J. Comparison of the effectiveness of eicosapentaenoic acid administered as either the free acid or ethyl ester as an anticachectic and antitumour agent. Prostaglandins Leukot. Essent. Fatty Acids, 1994, 51(2), 141-145.
[http://dx.doi.org/10.1016/0952-3278(94)90090-6] [PMID: 7972268]
[168]
Beck, S.A.; Smith, K.L.; Tisdale, M.J. Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res., 1991, 51(22), 6089-6093.
[PMID: 1657378]
[169]
Yang, Y-L.; Sui, G-Y.; Liu, G-C.; Huang, D-S.; Wang, S-M.; Wang, L. The effects of psychological interventions on depression and anxiety among Chinese adults with cancer: a meta-analysis of randomized controlled studies. BMC Cancer, 2014, 14(1), 956.
[http://dx.doi.org/10.1186/1471-2407-14-956] [PMID: 25510213]
[170]
Zheng, J-S.; Hu, X-J.; Zhao, Y-M.; Yang, J.; Li, D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ, 2013, 346, f3706.
[http://dx.doi.org/10.1136/bmj.f3706] [PMID: 23814120]
[171]
Noel, S.E.; Stoneham, A.C.; Olsen, C.M.; Rhodes, L.E.; Green, A.C. Consumption of omega-3 fatty acids and the risk of skin cancers: a systematic review and meta-analysis. Int. J. Cancer, 2014, 135(1), 149-156.
[http://dx.doi.org/10.1002/ijc.28630] [PMID: 24265065]
[172]
Brasky, T.M.; Darke, A.K.; Song, X.; Tangen, C.M.; Goodman, P.J.; Thompson, I.M.; Meyskens, F.L., Jr; Goodman, G.E.; Minasian, L.M.; Parnes, H.L.; Klein, E.A.; Kristal, A.R. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J. Natl. Cancer Inst., 2013, 105(15), 1132-1141.
[http://dx.doi.org/10.1093/jnci/djt174] [PMID: 23843441]
[173]
Mocellin, M.C.; Camargo, C.Q.; Nunes, E.A.; Fiates, G.M.R.; Trindade, E.B.S.M. A systematic review and meta-analysis of the n-3 polyunsaturated fatty acids effects on inflammatory markers in colorectal cancer. Clin. Nutr., 2016, 35(2), 359-369.
[http://dx.doi.org/10.1016/j.clnu.2015.04.013] [PMID: 25982417]
[174]
Yu, X.; Mi, L.; Dong, J.; Zou, J. Long intergenic non-protein-coding RNA 1567 (LINC01567) acts as a “sponge” against microRNA-93 in regulating the proliferation and tumorigenesis of human colon cancer stem cells. BMC Cancer, 2017, 17(1), 716.
[http://dx.doi.org/10.1186/s12885-017-3731-5] [PMID: 29110645]
[175]
Zhang, J.Q.; Zeng, S.; Vitiello, G.A.; Seifert, A.M.; Medina, B.D.; Beckman, M.J.; Loo, J.K.; Santamaria-Barria, J.; Maltbaek, J.H.; Param, N.J.; Moral, J.A.; Zhao, J.N.; Balachandran, V.; Rossi, F.; Antonescu, C.R.; DeMatteo, R.P. Macrophages and CD8+ T cells mediate the antitumor efficacy of combined CD40 ligation and imatinib therapy in gastrointestinal stromal tumors. Cancer Immunol. Res., 2018, 6(4), 434-447.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0345] [PMID: 29467128]
[176]
DeBoer, M.D. Ghrelin and cachexia: will treatment with GHSR-1a agonists make a difference for patients suffering from chronic wasting syndromes? Mol. Cell. Endocrinol., 2011, 340(1), 97-105.
[http://dx.doi.org/10.1016/j.mce.2011.02.012] [PMID: 21354462]
[177]
Granado, M.; Priego, T.; Martín, A.I.; Villanúa, M.A.; López-Calderón, A. Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in arthritic rats. Am. J. Physiol. Endocrinol. Metab., 2005, 288(3), E486-E492.
[http://dx.doi.org/10.1152/ajpendo.00196.2004] [PMID: 15507538]
[178]
Adachi, S.; Takiguchi, S.; Okada, K.; Yamamoto, K.; Yamasaki, M.; Miyata, H.; Nakajima, K.; Fujiwara, Y.; Hosoda, H.; Kangawa, K.; Mori, M.; Doki, Y. Effects of ghrelin administration after total gastrectomy: a prospective, randomized, placebo-controlled phase II study. Gastroenterology, 2010, 138(4), 1312-1320.
[http://dx.doi.org/10.1053/j.gastro.2009.12.058] [PMID: 20060830]
[179]
Lundholm, K.; Gunnebo, L.; Körner, U.; Iresjö, B.M.; Engström, C.; Hyltander, A.; Smedh, U.; Bosaeus, I. Effects by daily long term provision of ghrelin to unselected weight-losing cancer patients: a randomized double-blind study. Cancer, 2010, 116(8), 2044-2052.
[http://dx.doi.org/10.1002/cncr.24917] [PMID: 20186829]
[180]
Zhao, S.; He, L.; Feng, C.; He, X. Improvements in medical quality and patient safety through implementation of a case bundle management strategy in a large outpatient blood collection center. Medicine (Baltimore), 2018, 97(22)e10990
[http://dx.doi.org/10.1097/MD.0000000000010990] [PMID: 29851856]
[181]
Sever, S.; White, D.L.; Garcia, J.M. Is there an effect of ghrelin/ghrelin analogs on cancer? A systematic review. Endocr. Relat. Cancer, 2016, 23(9), R393-R409.
[http://dx.doi.org/10.1530/ERC-16-0130] [PMID: 27552970]
[182]
Grönberg, M.; Ahlin, C.; Naeser, Y.; Janson, E.T.; Holmberg, L.; Fjällskog, M-L. Ghrelin is a prognostic marker and a potential therapeutic target in breast cancer. PLoS One, 2017, 12(4)e0176059
[http://dx.doi.org/10.1371/journal.pone.0176059] [PMID: 28419141]
[183]
Khatib, M.N.; Shankar, A.; Kirubakaran, R.; Gaidhane, A.; Gaidhane, S.; Simkhada, P.; Quazi Syed, Z. Ghrelin for the management of cachexia associated with cancer. Cochrane Libr., 2016.
[http://dx.doi.org/10.1002/14651858.CD012229] [PMID: 29489032]
[184]
Rayman, M.P.; Winther, K.H.; Pastor-Barriuso, R.; Cold, F.; Thvilum, M.; Stranges, S.; Guallar, E.; Cold, S. Effect of long-term selenium supplementation on mortality: Results from a multiple-dose, randomised controlled trial. Free Radic. Biol. Med., 2018, 127, 46-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.02.015] [PMID: 29454039]
[185]
Omura, Y.; Lu, D.; Jones, M.K.; Nihrane, A.; Duvvi, H.; Yapor, D.; Shimotsuura, Y.; Ohki, M. Optimal dose of vitamin D3 400 I.U. for average adults has a significant anti-cancer effect, while widely used 2000 I.U. or higher promotes cancer: marked reduction of taurine & 1α, 25(OH)2D3 was found in various cancer tissues and oral intake of optimal dose of taurine 175mg for average adults, rather than 500mg, was found to be a new potentially safe and more effective method of cancer treatment. Acupunct. Electrother. Res., 2016, 41(1), 39-60.
[http://dx.doi.org/10.3727/036012916X14597946741564] [PMID: 27244952]
[186]
Blancquaert, L.; Baguet, A.; Bex, T.; Volkaert, A.; Everaert, I.; Delanghe, J.; Petrovic, M.; Vervaet, C.; De Henauw, S.; Constantin-Teodosiu, D.; Greenhaff, P.; Derave, W. Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial. Br. J. Nutr., 2018, 119(7), 759-770.
[http://dx.doi.org/10.1017/S000711451800017X] [PMID: 29569535]
[187]
Villars, F.O.; Pietra, C.; Giuliano, C.; Lutz, T.A.; Riediger, T. Oral Treatment with the Ghrelin Receptor Agonist HM01 Attenuates Cachexia in Mice Bearing Colon-26 (C26) Tumors. Int. J. Mol. Sci., 2017, 18(5), 986.
[http://dx.doi.org/10.3390/ijms18050986] [PMID: 28475119]
[188]
Strasser, F.; Lutz, T.A.; Maeder, M.T.; Thuerlimann, B.; Bueche, D.; Tschöp, M.; Kaufmann, K.; Holst, B.; Brändle, M.; von Moos, R.; Demmer, R.; Cerny, T. Safety, tolerability and pharmacokinetics of intravenous ghrelin for cancer-related anorexia/cachexia: a randomised, placebo-controlled, double-blind, double-crossover study. Br. J. Cancer, 2008, 98(2), 300-308.
[http://dx.doi.org/10.1038/sj.bjc.6604148] [PMID: 18182992]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 31
Year: 2019
Page: [5728 - 5744]
Pages: 17
DOI: 10.2174/0929867325666180629123817
Price: $65

Article Metrics

PDF: 38
HTML: 2