Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

General Review Article

Recent Developments in Azole Compounds as Antitubercular Agent

Author(s): Rina Das, Gyati S. Asthana*, Krishan A. Suri, Dinesh Mehta and Abhay Asthana

Volume 16, Issue 3, 2019

Page: [290 - 306] Pages: 17

DOI: 10.2174/1570193X15666180622144414

Price: $65

Abstract

Tuberculosis (TB) is a global health disaster and is a wide-reaching hitch. The improper use of antibiotics in chemotherapy of TB patients led to the current problem of tuberculosis therapy which gives rise to Multi-Drug Resistant (MDR) strains. Nitrogen heterocycles including azole compounds are an important class of therapeutic agent with electron-rich property. Azole-based derivatives easily bind with the enzymes and receptors in organisms through noncovalent interactions, thereby possessing various applications in medicinal chemistry. Research on azoles derivatives have been expansively carried out and have become one of the extremely active area in recent years and the progress is quite rapid. A genuine attempt to review chemistry of azoles and to describe various azole-based compounds synthesized in the last two decades having promising antitubercular potential is described in the present article. It is hopeful that azole compounds may continue to serve as an important direction for the exploitation of azole-based antitubercular drugs with better curative effect, lower toxicity, less side effects, especially fewer resistances and so on.

Keywords: Tuberculosis, multi-drug resistant, azole compounds, antitubercular drugs, non-tuberculous mycobacterium, human immunodeficiency virus.

« Previous
Graphical Abstract
[1]
De Souza, M.V.N. Current status and future prospects for new therapies for pulmonary tuberculosis. Curr. Opin. Pulm. Med., 2006, 12, 167-171.
[2]
De Souza, M.V.N. Promising drugs against tuberculosis in recent past. Anti- Infect. Drug Discov., 2006, 1, 3344-3346.
[3]
Swamy, B.N.; Suma, T.K.; Rao, G.V.; Reddy, G.C. Synthesis of isonicotinoylhydrazones from anacardic acid and their in vitro activity against Mycobacterium smegmatis. Eur. J. Med. Chem., 2007, 42, 420-424.
[4]
Janin, Y.L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem., 2007, 15, 2479-2513.
[5]
Scior, T. Garces, Eisele, S.J. Isoniazid is not a lead compound for its pyridyl ring derivatives, isonicotinoyl amides, hydrazides, and hydrazones: A critical review. Curr. Med. Chem., 2006, 13, 2205-2219.
[6]
Ballell, L.; Field, R.A.; Duncan, K.; Young, R.J. New small-molecule synthetic antimycobacterials. Antimicrob. Agents Chemother., 2005, 49, 2153-2163.
[7]
Sriram, D.; Bal, T.R.; Yogeeswari, P. Newer aminopyrimidinimino isatin analogues as non-nucleoside HIV-1 reverse transcriptase inhibitors for HIV and other opportunistic infections of AIDS: design, synthesis and biological evaluation. Farmaco, 2005, 60, 377-384.
[8]
Marwick, C. Do worldwide outbreaks mean tuberculosis again becomes ‘captain of all these men of death’? JAMA, 1992, 257, 1174-1175.
[9]
Daniel, T.M. In: Tuberculosis; Wilson, J.D.; Braunwald.; Isselbacher, K.J.; Petersdorf, R.G.; Martin, J.B.; Fauci, A.S.; Root, R.K. (Eds.), Harrison's Principles of Internal Medicine, 12th ed.; McGraw-Hill: New York, 1991, 637-638.
[10]
Kamal, A.; Azeeza, S.; Malik, M.S.; Shaik, A.A.; Rao, M.V. Efforts towards the development of new antitubercular agents: Potential for thiolactomycin based compounds. J. Pharm. Pharm. Sci., 2008, 11(2), 56-80.
[11]
Shafii, B.; Amini, M.; Akbarzadeh, T.; Shafiee, A. Synthesis and antitubercular activity of N3,N5-diaryl-4-(5-arylisoxazol-3-yl)-1,4-dihydropyridine-3,5-dicarboxamide. J. Sci., 2008, 19(4), 323-328.
[12]
Nahid, P.; Pai, M.; Hopewell, P.C. Advances in the diagnosis and treatment of tuberculosis. Proc. Am. Thorac. Soc., 2006, 3, 103-110.
[13]
Nguyen, L.; Thompson, C.J. Foundations of antibiotic resistance in bacterial physiology: The mycobacterial paradigm. Trends Microbiol., 2006, 14, 304-312.
[14]
Tripathi, R.P.; Tewari, N.; Dwivedi, N.; Tiwari, V.K. Fighting tuberculosis: An old disease with new challenges. Med. Res. Rev., 2005, 25, 93-131.
[15]
Trivedi, A.R.; Siddiqui, A.B.; Shah, V.H. Design, synthesis, characterization and antitubercular activity of some 2-heterocycle-substituted phenothiazines. ARKIVOC, 2008, (ii), 210-217.
[16]
Peloquin, C.A.; Berning, S.E. Infection caused by Mycobacterium tuberculosis. Ann. Pharmacother., 1994, 28, 72-74.
[17]
Berry, M.; Kon, O.M. Multidrug and extensively drug-resistant tuberculosis: An emerging threat. Eur. Respir. Rev., 2009, 18, 195-197.
[18]
Lourenço, M.C.D.S.; Ferreira, M.D.L.; De Souza, M.V.N.; Peralta, M.A.; Vasconcelos, T.R.A.; Henriques, M.D.G.M.O. Synthesis and antimycobacterial activity of (E)-N′-(monosubstituted benzylidene) isonicotinohydrazide derivatives. Eur. J. Med. Chem., 2008, 43, 1344-1347.
[19]
Geneva, 2006. Available from:. who.int/mediacentre/ factsheets/fs104/ en/index.html (Accessed on: October 03, 2013).
[20]
Rakesh, S.D.; Lee, R.B.; Tangallapally, R.P.; Lee, R.E. Synthesis, optimization and structure activity relationships of 3,5-disubstituted isoxazolines as new antituberculosis agents. Eur. Med. Chem, 2009, 44, 460-472.
[21]
Frieden, T.R.; Sterling, T.R.; Munsiff, S.S.; Watt, C.J.; Dye, C. Tuberculosis. Lancet, 2003, 362, 887-899.
[22]
Parrish, N.M.; Dick, J.D. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol., 1998, 6, 107-112.
[23]
Manabe, Y.C.; Bishai, W.R. Latent Mycobacterium tuberculosis -persistence, patience, and winning by waiting. Nat. Med., 2000, 6, 1327-1329.
[24]
Szekely, R.; Waczek, F.; Szabadkai, I.; Németh, G.; Hegymegi, B.B.; Erős, D.; Szokol, B.; Pató, J.; Hafenbradl, D.; Satchell, J.; Saint, J.B.; Cole, S.T.; Őrfi, L.; Klebl, B.M.; Kéri, G. A novel drug discovery concept for tuberculosis: Inhibition of bacterial and host cell signaling. Immunol. Lett., 2008, 116, 225-231.
[25]
Somu, R.V.; Boshoff, H.; Qiao, C.; Bennett, E.M.; Barry, C.E.; Aldrich, C.C. Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J. Med. Chem., 2006, 49, 3-34.
[26]
Sacchettini, J.C.; Rubin, E.J.; Freundlich, J.S. Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis. Nat. Rev. Microbiol., 2008, 6, 41-52.
[27]
Snider, J.D.E.; Castro, K.G. The global threat of drug-resistant tuberculosis. Eng. J. Med., 1998, 338, 1689-1690.
[28]
Ramchandran, R.; Paramasivan, C. What is new in the diagnosis of tuberculosis? Part 1: Techniques for diagnosis of tuberculosis. Ind. J. Tub, 2003, 50, 133-141.
[29]
Mehta, D.K.; Martin, J.; Jordan, B.; Macfarlane, C.R.; Ryan, R.S.M.; Wagle, S.M.S.; Hashmi, F.T.; Kakar, S.; Kouimtzi, M.; Masieh, D.; Radia, H.C.G.; Sharma, V.K.; Shing, T.; Gallagher, G.P. Antituberculous drugs. In: British National Formulary; 2003, 283-287.
[30]
Petri, W.A. Antimicrobial agents, drugs used in the chemotherapy of Tuberculosis, Mycobacterium avium Complex Disease, and Leprosy; In: Goodman Gilman's The Pharmacological Basis of Therapeutics, Hardman, J.G.; Limbird, L.E.; Goodman A, 10th ed.; 2001, 1273-1294.
[31]
Lemke, T.L. Antimycobacterial agents. In: Principles of Medicinal Chemistry, Foye W.O.; Lemke, T.L.; Williams, D.A.; 4th ed., 1995, 747-758.
[32]
Silva, P.A.; Anisa, J. Drug and drug interaction. In: Tuberculosis: From Basic Science to Patient Care. Palomino, J.C.; Leão SC, Ritacco, 5th ed.; 2007, pp. 593- 633.
[33]
Barry, C.E.; Slayden, R.A.; Sampson, A.E.; Lee, R.E. Use of genomics and combinatorial chemistry in the development of new antimycobacterial drugs. Biochem. Pharmacol., 2000, 59, 221-231.
[34]
Anastasia, S.K.; Petros, C.K. In: Old and New TB Drugs: Mechanisms of Action and Resistance, Understanding Tuberculosis - New Approaches to Fighting Against Drug Resistance; Pere-Joan Cardona, Ed, InTech, 2012; pp. 209-232.
[35]
Control, Global Tuberculosis urveillance, Planning, Financing WHO Report, 2008, 51-54.
[36]
Ruiz Serrano, M.J.; Alcala, L.; Martinez, L.; Diaz, M.; Marin, M.; Gonzalez Abad, M.J.; Bouza, E. In vitro activities of six fluoroquinolones against 250 clinical isolates of Mycobacterium tuberculosis susceptible or resistant to first-line antituberculosis drugs. Antimicrob. Agents Chemother., 2000, 44, 2567-2568.
[37]
Smith, C.V.; Sharma, V.; Sacchettini, J.C. TB drug discovery: Addressing issues of persistence and resistance. Tuberculosis (Edinb.), 2004, 84, 45-55.
[38]
Sullivan, E.A.; Kreiswirth, B.N.; Palumbo, L.; Kapur, V.; Musser, J.M.; Ebrahimzadeh, A.; Frieden, T.R. Emergence of fluoroquinolone-resistant tuberculosis in New York City. Lancet, 1995, 345, 1148-1150.
[39]
Teodori, E.; Dei, S.; Scapecchi, S.; Gualtieri, F. The medicinal chemistry of Multidrug Resistance (MDR) reversing drugs. Farmaco, 2000, 57, 385-415.
[40]
Russell, D.G. Mycobacterium tuberculosis: Here today, and here tomorrow. Nat. Rev. Mol. Cell Biol., 2001, 2, 569-577.
[41]
Omar, A.; Ahmed, M.A. Synthesis of some new 3h-quinazolin-4-one derivatives as potential antitubercular agents. World Appl. Sci. J., 2008, 5(1), 94-99.
[42]
Stahlmann, R.; Lode, H. Toxicity of quinolones. Drugs, 1999, 58(Suppl. 2), 37-42.
[43]
Da Silva, A.D.; De Almeida, M.V. De souza, M.V.N.; Couri, M. R.C. Biological activity and synthetic methodologies for the preparation of fluoroquinolones, a class of potent antibacterial agents. Curr. Med. Chem., 2003, 10, 21-39.
[44]
Rieder, H.L.; Arnadottir, T.; Trebucq, A.; Enarson, D.A. Tuberculosis treatment: Dangerous regimens? Int. J. Tuberc. Lung Dis., 2001, 5, 1-3.
[45]
Global Alliance for TB drug development. Tuberculosis. Scientific blueprint for tuberculosis drug development. Tuberculosis (Edinb.), 2001, 81(Suppl. 1), 1-52. [Edinb].
[46]
O’Brien, R.J.; Nunn, P.P. The need for new drugs against tuberculosis. Obstacles, opportunities, and next steps. Am. J. Respir. Crit. Care Med., 2001, 163, 1055-1058.
[47]
Glickman, S.W.; Rasiel, E.B.; Hamilton, C.D.; Kubataev, A.; Schulman, K.A. A portfolio model of drug development for tuberculosis. Science, 2006, 311, 1246-1247.
[48]
Tomioka, H. Prospects for development of new antituberculous drugs. Kekkaku, 2002, 77, 573-584.
[49]
Duncan, K.; Barry, C.E. Prospects for new antitubercular drugs. Curr. Opin. Microbiol., 2004, 7, 460-465.
[50]
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions, Synthesis, and Applications, 2nd ed; John Wiley & Sons: New York, 2003.
[51]
Yang, Y.; Rasmussen, B.A.; Shlaes, D.M. Class A beta-lactamases-enzyme-inhibitor interactions and resistance. Pharmacol. Ther., 1999, 83, 141-151.
[52]
Hakimian, S.; Cheng-Hakimian, A.; Anderson, G.D.; Miller, J.W. Rufinamide: A new anti-epileptic medication. Expert Opin. Pharmacother., 2007, 8(12), 1931-1940.
[53]
Rizatriptan, MedlinePlus. U.S. National Library of Medicine. Available from: http://www.nlm.nih.gov/medlineplus/druginfo/ meds/ a601109.html (Accessed on: June 16, 2015).
[54]
Carter, J.; Saunders, V. Virology, Principles and Applications; John Wiley & Sons: Hoboken, 2007.
[55]
Hozawa, S. Effects of a PAF antagonist, Y-24180, on bronchial hyper responsiveness in patients with asthma. Am. J. Respir. Crit. Care Med., 1995, 152(4), 1198-1202.
[56]
Galliani, A.; Omodei-Salé, A. Pregnancy-terminating effect in dogs. J. Small Anim. Pract., 1982, 23, 295-300.
[57]
Yamamoto, K.; Matsushita, A.; Sawada, T.; Naito, Y.; Yoshimura, K.; Takesue, H.; Utsumi, S.; Kawasaki, K.; Hirono, S.; Koshida, H. Pharmacology of a new sleep inducer, 1H-1,2,4-triazolyl benzophenone derivative, 450191-S (II). Sleep-inducing activity and effect on the motor system. Nippon Yakurigaku Zasshi, 1984, 84(1), 25-89.
[58]
Bennett, J.E. Antifungal agents. In: Goodman Gilman’s The Pharmacological Basis of Therapeutics, Brunton L.L.; Chabner, B.A.; Knollmann, B.C.; 12th ed, 2011, Chapter 57.
[59]
Douyon, R.; Angrist, B.; Peselow, E.; Cooper, T.; Rotrosen, J. Neuroleptic augmentation with alprazolam: Clinical effects and pharmacokinetic correlates. Am. J. Psychiatry, 1989, 146(2), 231-234.
[60]
Hulin, B.; Clark, D.A.; Goldstein, S.W.; McDermott, R.E.; Dambek, P.J.; Kappeler, W.H.; Lamphere, C.H.; Lewis, D.M.; Rizzi, J.P. Novel thiazolidine-2,4-diones as potent euglycemic agents. J. Med. Chem., 1992, 35(10), 1853-1864.
[61]
Budavari, S. The Merck Index, 12th ed; Merck Research Laboratories Division of Merck & Co.: Whitehouse Station, 1996.
[62]
Mitscher, L.A.; Lednicer, D. The organic chemistry of drug synthesis; John Wiley Sons: New York, 1990, 4, 5-6.
[63]
Nava, S.; Crotti, P.; Gurrieri, G.; Fracchia, C.; Rampulla, C. Effect of a beta-2-agonist (broxaterol) on respiratory muscle strength and andurance in patients with COPD with irreversible airway obstruction. Chest, 1992, 101(1), 133-140.
[64]
Lipman, A.G. Martindale, 30th ed; The Extra Pharmacopoeia, 1993.
[65]
Khan, Z.K.; Jain, P. Antifungal agents and immunomodulators in systemic mycoses. Indian J. Chest Dis. Allied Sci., 2000, 42, 345-355.
[66]
Sud, I.J.; Chou, D.L.; Feingold, D.S. Effect of free fatty acids on liposome susceptibility to imidazole antifungals. Antimicrob. Agents Chemother., 1979, 16, 660-663.
[67]
Bossche, H.V.; Engelen, M.; Rochette, F. Antifungal agents of use in animal health-chemical, biochemical and pharmacological aspects. J. Vet. Pharmacol. Ther., 2003, 26, 5-29.
[68]
Cyclooxygenase inhibitors, NSAID - Pyrazole derivatives Available from: http://www.pharmacorama.com/en/Sections/Eicosanoids_ 5_1_5.php (Accessed on February 3rd, 2013).
[69]
Hemenway, J.N. Case Study: Omeprazole (Prilosec®). In Prodrugs, Biotechnology: Pharmaceutical Aspects, 2007, 1313-1321.
[70]
Senn, B.J.; Sturm, E. In: The development of a new proton-pump inhibitor: the case history of pantoprazole. In: Analogue-based Drug Discovery, Fischer, J.; Ganellin, C.R. eds., John Wiley Sons, Inc.: New Jersey, 2006, 115-136.
[71]
Poncet, J. The dolastatins, a family of promising antineoplastic agents. Curr. Pharm. Des., 1999, 5, 139-162.
[72]
Ganellin, C.R.; David, J.T. Dictionary of Pharmacological Agents; CRC Press: Florida, 1865.
[73]
Guay, D.R. Cefdinir: An advanced-generation, broad-spectrum oral cephalosporin. Clin. Ther., 2002, 24(4), 473-489.
[74]
Brauser, D. Famotidine may prevent peptic ulcers, esophagitis in patients taking low-dose aspirin. Medscape. Available at: http://misc.medscape.com/pi/iphone/medscapeapp/html/A173727-business.html (Accessed on: June 16, 2015).
[75]
Stamp, L.K.; O’Donnell, J.L.; Chapman, P.T. Emerging therapies in the long-term management of hyperuricaemia and gout. Int. Med. J., 2007, 37(4), 258-266.
[76]
Xie, Y.; Deng, S.; Chen, Z. Identification of small-molecule inhibitors of the Aβ-ABAD interaction. Bioorg. Med. Chem. Lett., 2006, 16(17), 4657-4660.
[77]
Khurmi, N.S.; Bowles, M.J.; O’Hara, M.J.; Lahiri, A.; Raftery, E.B. Ambulatory monitoring and exercise testing in the evaluation of a new long-acting calcium ion antagonist KB-944 (Fostedil) for the treatment of exertional angina pectoris. Int. J. Cardiol., 1985, 9(3), 289-302.
[78]
Woolley, D.W. Some biological effects produced by benzimidazole and their reversal by purines. J. Biol. Chem., 1944, 152, 225-232.
[79]
Van den Bossche, H. Biochemical effects of miconazole on fungi. I. Effects on the uptake and or utilization of purines, pyrimidines, nucleosides, amino acids and glucose by Candida albicans. Biochem. Pharmacol., 1974, 23(4), 887-899.
[80]
Jerchel, D. Fischer. H.; Kracht, M. Zur Darstellung der Benzimidazole. Liebigs Ann. Chem., 1952, 575, 162-173.
[81]
Herrling, S.H.; Sous, W.; Kruppe, G.; Osterloh, M. H. Experimentelle Untersuchungenuber eine neue gegen Pilze wirksame Verbindung. Arneim. Forsch., 1959, 9, 489-494.
[82]
Seeliger, H.P.R. Pilzemmende Wirkung eines neuen Benzimidazol Derivatives. Mykosen, 1958, 1, 162-171.
[83]
Robinson, H.J.; Phares, H.F.; Graessle, O.E. Antimycotic properties of thiabendazole. J. Invest. Dermatol., 1964, 42, 479-482.
[84]
Brugmans, J.P.; Thienpont, D.C.; Van, W.I.; Vanpar, O.F.; Schulmans, V.L.; Lauwers, H.L. Mebendazole in enterobiasis. JAMA, 1971, 217, 313-316.
[85]
Plempel, M. Bartmann. K.; Buchel, K.H.; Regel, E. Experimentelle Befunde uber ein neues oral wirksames Antimykoticummit breiten Wirkungs specktrum. Med. Wochenschr, 1969, 94, 1356-1364.
[86]
Plempel, M.; Bartmann, K. Experimental studies on the antimycotic action of clotrimazole (Canesten) in vitro and after local application in vivo. Drugs Germ, 1972, 15, 103-120.
[87]
Fromtling, R.A. Recent trends in the discovery, development and evaluation of antifungal agents; J.R; Prous Publishers: Barcelona, 1987, pp. 471-478.
bKharb, R. New insights into chemistry and anti-infective potential of triazole scaffold. Curr. Med. Chem., 2011, 18(21), 3265-3297.
[88]
Fromtling, R.A. Overview of medically important antifungal azole derivatives. Clin. Microbiol. Rev., 1988, 1(2), 187-217.
[89]
Pandey, J.; Tiwari, V.K.; Verma, S.S.; Chaturvedi, V.; Bhatnagar, S.; Sinha, S.; Gaikwad, A.N.; Tripathi, R.P. Synthesis and antitubercular screening of imidazole derivatives. Eur. J. Med. Chem., 2009, 44(8), 3350-3355.
[90]
Lu, X.; Liu, X.; Wan, B.; Franzblau, S.G.; Chen, L.; Zhou, C.; You, Q. Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6 dichlorobenzyloxy) phenyl thiazole, oxazole and imidazole derivatives. Eur. J. Med. Chem., 2012, 49(2), 164-171.
[91]
Hirofumi, S.; Yoshikazu, H.; Motohiro, I.; Hideaki, K. Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2, 3-dihydroimidazo [2,1-b]oxazoles. J. Med. Chem., 2006, 49(26), 7854-7860.
[92]
Eswaran, S.; Airody, V.A.; Ajay, K. New 1,3-oxazolo[4,5-c] quinoline derivatives: Synthesis and evaluation of antibacterial and antituberculosis properties. Eur. J. Med. Chem., 2010, 45(3), 957-966.
[93]
Dharmarajan, S.; Perumal, Y.; Rathinasababathy, T.; Roheet, K.P. Discovery of new antitubercular oxazolyl thiosemicarbazones. J. Med. Chem., 2006, 49(12), 3448-3450.
[94]
Jose, C.; Arthur, B.; Neira, G.; Juan, R.; Rosario, R. Synthesis and biological evaluation of benzimidazole-5-carbohydrazide derivatives as antimalarial, cytotoxic and antitubercular agents. Bioorg. Med. Chem., 2011, 19(6), 2023-2029.
[95]
Kumar, K.; Awasthi, D.; Seung-Yub, L.; Ilaria, Z.; Bela, R. Novel trisubstituted benzimidazoles, targeting Mtb ftsz, as a new class of antitubercular agents. J. Med. Chem., 2011, 54(1), 374-381.
[96]
Gill, C.; Jadhav, G.; Shaikh, M.; Kale, R.; Ghawalkar, A.; Nagargoje, D. Clubbed [1,2,3] triazoles by fluorine benzimidazole: A novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg. Med. Chem. Lett., 2008, 18(23), 6244-6247.
[97]
Carta, A.; Palomba, M.; Paglietti, G.; Molicotti, P.; Paglietti, B.; Cannas, S.; Zanetti, S. [1,2,3]Triazolo[4,5-h]quinolones: A new class of potent antitubercular agents against multidrug resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. Lett., 2007, 17(17), 4791-4794.
[98]
Sanna, P.; Carta, A.; Mohammad, E.R.N. Synthesis and antitubercular activity of 3-aryl substituted-2-(1H (2H)benzotriazol-1(2)-yl) acrylonitriles. Eur. J. Med. Chem., 2000, 35(5), 535-543.
[99]
Dubey, A.; Srivastava, S.K.; Srivastava, S.D. Conventional and microwave assisted synthesis of 2-oxo-4-substituted aryl-azetidine derivatives of benzotriazole: A new class of biological compounds. Bioorg. Med. Chem. Lett., 2011, 21(1), 569-573.
[100]
Pathak, R.B.; Chovatia, P.T.; Parekh, H.H. Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(15), 5129-5133.
[101]
Chovatia, P.T.; Akabari, J.D.; Kachhadia, P.K.; Zalavadia, P.D.; Joshi, H.S. Synthesis and selective antitubercular and antimicrobial inhibitory activity of 1-acetyl-3,5-diphenyl-4,5-dihydro-(1h)-pyrazole derivatives. J. Serb. Chem. Soc., 2006, 71(7), 713-720.
[102]
Velaparthi, S.; Brunsteiner, M.; Uddin, R.; Wan, B.; Scott, G.F. 5-tert-Butyl-N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[d]isoxazole-3-carboxamide derivatives as novel potent inhibitors of Mycobacterium tuberculosis pantothenate synthetase: Initiating a quest for new antitubercular drugs. J. Med. Chem., 2008, 51(7), 1999-2002.
[103]
Almeida, D.S.P.E.; Ramos, D.F.; Bonacorso, H.G.; Iglesia, D.L.A.I.; Oliveira, M.R.; Coelho, T.; Navarini, J. Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro [chloro] methyl-4,5-dihydro-1H-1-(isonicotinoyl) pyrazoles. Int. J. Antimicrob. Agents, 2008, 32(2), 139-144.
[104]
Taylor, A.C.; Regina, C.; Wolfgang, F.; Micha, P.K.; Kethiri, R.R.; Scott, G.F.; Hans-Joachim, K. Synthesis and activity of carbazole derivatives against Mycobacterium tuberculosis. ChemMedChem, 2006, 1(8), 812-815.
[105]
Srinivas, K.; Thirumal, Y.; Govardhan, S.; Balasubramanian, S.; Perumal, Y.; Dharmarajan, S. Synthesis and antitubercular evaluation of novel dibenzo[b,d]furan and 9-methyl-9H-carbazole derived hexahydro-2H-pyrano[3,2-c]quinolines via Povarov reaction. Eur. J. Med. Chem., 2011, 46(10), 4827-4833.
[106]
Lee, S.; Kim, S.; Yun, M. Synthesis and antitubercular activity of monocyclic nitroimidazoles: Insights from econazole. Bioorg. Med. Chem. Lett., 2011, 21(5), 1515-1518.
[107]
Alegaon, S.G.; Alagawadi, K.R.; Sonkusare, P.V.; Chaudhary, S.M.; Dadwe, D.H.; Shah, A.S. Novel imidazo [2,1- b][1,3,4] thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(5), 1917-1921.
[108]
Fassihi, A.; Azadpour, Z.; Delbari, N. Synthesis and antitubercular activity of novel 4-substituted imidazolyl-2,6- dimethyl-N3,N5-bisaryl-1,4-dihydropyridine-3,5-dicarboxamides. Eur. J. Med. Chem., 2009, 44(8), 3253-3258.
[109]
Zampieri, D.; Mamolo, M.G.; Laurini, E.; Scialino, G.; Banfi, E.; Vio, L. Antifungal and antimycobacterial activity of 1-(3,5-diaryl-4,5-dihydro-1H-pyrazol-4-yl)-1H-imidazole derivatives. Bioorg. Med. Chem., 2008, 16(8), 4516-4522.
[110]
Patel, H.M.; Noolvi, M.N.; Sethi, N.S.; Gadad, A.K.; Cameotra, S.S. Synthesis and antimicrobial evaluation of novel 1,3,4-thiadiazole derivatives of 2-(4-formyl-2- methoxyphenoxy) acetic acid. Arab. J. Chem., 2013, •••, 1-22.
[111]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur. J. Med. Chem., 2009, 44, 4244-4248.
[112]
Gupta, P.; Hameed, S.; Jain, R. Ring substituted imidazoles as a new class of antituberculosis agents. Eur. J. Med. Chem., 2004, 39, 805-814.
[113]
Jyoti, P.; Vinod, T.K.; Shyam, V.S.; Vinita, C.; Bhatnagar, S.; Sinha, S.; Gaikwad, A.N.; Tripathi, R.P. Synthesis and antitubercular screening of imidazole derivatives. Eur. J. Med. Chem., 2009, 44, 3350-3355.
[114]
Patel, P.; Korgaokar, S.; Parikh, K.; Parekh, H. Synthesis and biological activity of 2-azetidinones, sulphonamides, arylamides and thiourea derivatives. IJC, 1999, 38(B), 696-700.
[115]
Kaythara, P.; Upadhayay, T.; Doshi, R.; Parel, H.H. Synthesis of some 2-azetidinones as a potential anti-tubercular agent. Indian J. Heterocycl. Chem., 2000, 10, 9-12.
[116]
Khyati, P. A.; Oza, P. S.; Bhatt, S. B.; Parikh, A.R. Synthesis of some new 2 azetidinones as potential anti tubercular agents., Indian J. Chem., 2000, 39(B), 716-718.
[117]
Dighe, R.D.; Rohom, S.S.; Deshpande, M.M.; Khairnar, S.A.; Mehetre, C.R.; Mandlik, P.N.; Malani, R.R. Microwave assisted synthesis and evaluation of isatinyl thiazole derivatives as anti-Mycobacterium tuberculosis agents and dTDP- rhamnose inhibitors. IJRPBS, 2011, 2(2), 776-779.
[118]
Pathak, R.B.; Chovatia, P.T.; Parekh, H.H. Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(15), 5129-5133.
[119]
Pushkal, S.; Ritu, S.; Santosh, K.; Srivastava, A.; Savitri, D.S. Synthesis of 2-oxoazetidine derivatives of 2-aminothiazole and their biological activity. J. Serb. Chem. Soc., 2012, 77(5), 599-605.
[120]
Saundane, A.R.; Walmik, P. Synthesis, antioxidant, antimicrobial, antimycobacterial, and cytotoxic activities of azetidinone and thiazolidinone moieties linked to indole nucleus. J. Chem., 2013, •••, 1-9.
[121]
Mohite, P.B.; Bhaskar, V.H. In vitro evaluation of tetrazoles as a novel class of Antimycobacterium tuberculosis agents. Adv. Pharm. Bull., 2012, 2(1), 31-36.
[122]
Tripathi, R.P.; Yadav, A.K.; Ajay, A.B.S.S.; Chaturvedi, V.; Sinha, S.K. Application of Huisgen (3 + 2) cycloaddition reaction: Synthesis of 1-(2,3-dihydrobenzofuran-2-ylmethyl [1,2,3]-triazoles and their antitubercular evaluations. Eur. J. Med. Chem., 2010, 45, 142-148.
[123]
Kumar, S.G.V.; Rajendraprasad, Y.; Mallikarjuna, B.P.; Chandrashekar, S.M.; Kistayya, C. Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4-oxadiazoles as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem., 2010, 45, 2063-2074.
[124]
Patel, N.B.; Khan, I.H.; Rajani, S.D. Pharmacological evaluation and characterizations of newly synthesized 1,2,4-triazoles. Eur. J. Med. Chem., 2010, 45, 4293-4299.
[125]
Shanmugavelan, P.; Nagarajan, S.; Sathish, K.M.; Ponnuswamy, A.; Yogeeswari, P.; Sriram, D. Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2011, 21(24), 7273-7276.
[126]
Suhyun, K.; Sang-Nae, C.; Taegwon, O.; Pilho, K. Design and synthesis of 1H-1,2,3-triazoles derived from econazole as antitubercular agents. Bioorg. Med. Chem. Lett., 2012, 22, 6844-6847.
[127]
Dighe, N.S.; Saudagar, R.B.; Jain, D.A. Design, synthesis, antimicrobial and anti-inflammatory activities of some substituted-1, 3, 4-oxadiazole and substituted-1,2,4-triazoles. Med. Chem. Drug Discov., 2012, 2, 17-29.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy