Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Detoxification of Aflatoxin B1 in Peanut Oil by Iodine Doped Supported TiO2 Thin Film Under Ultraviolet Light Irradiation

Author(s): Chengpeng Xu, Shengying Ye*, Xiaolei Cui, Quan Zhang and Yan Liang

Volume 15, Issue 2, 2019

Page: [188 - 196] Pages: 9

DOI: 10.2174/1573413714666180621112032

Price: $65

Abstract

Background: Improper storage and raw materials make peanut oil susceptible to Aflatoxin B1 (AFB1). The semiconductor TiO2 photocatalysis technology is an effective technology which is widely used in sewage treatment, environmental protection and so on. Moreover, the photocatalytic efficiency can be improved by doping I.

Method: The experiment is divided into two parts. In the first part, supported TiO2 thin film (STF) was prepared on the quartz glass tube (QGT) by the sol-gel and calcination method and the supported iodine doped supported TiO2 thin film (I-STF) was synthesized using potassium iodate solution. In the second part, the photocatalytic degradation of AFB1 was performed in a self-made photocatalytic reactor. The AFB1 was detected by ELISA kit.

Results: The photocatalytic degradation of AFB1 has been proven to follow pseudo first-order reaction kinetics well (R2 > 0.95). The maximum degradation rate of 81.96%, which was reached at the optimum iodine concentration of 0.1mol/L, was 11.38% higher than that with undoped STF.

Conclusion: The doping of iodine reduces the band-gap of TiO2, thereby increasing the photocatalytic response range. The proportion of Ti4+ in I-STF has decreased, which means that Ti4+ are replaced by I. The I-STF prepared at iodine concentration of 0.1mol/L has good photocatalytic properties.

Keywords: Photocatalytic, supported, TiO2, quartz glass tube, iodine, peanut oil, aflatoxin B1, detoxification pathway.

Graphical Abstract
[1]
Rustom, I.S.Y. Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods. Food Chem., 1997, 59, 57-67.
[2]
Torres, A.M.; Barros, G.G.; Palacios, S.A.; Chulze, S.N.; Battilani, P. Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res. Int., 2014, 62, 11-19.
[3]
Piermarini, S.; Micheli, L.; Ammida, N.; Palleschi, G.; Moscone, D. Electrochemical immunosensor array using a 96-well screen-printed microplate for Aflatoxin B1 detection. Biosens. Bioelectron., 2007, 22, 1434-1440.
[4]
Wood, G.E. Mycotoxins in foods and feeds in the United States. J. Anim. Sci., 1992, 12(70), 3941-3949.
[5]
Lu, J.J.; Su, L.; Wang, D.J. Study on aflatoxins in edible vegetable oil of some provinces. Chinese J. Pub. Health Eng., 2014, 13, 34-35.
[6]
Diao, E.J.; Shen, X.Z.; Zhang, Z.; Ji, N.; Ma, W.W.; Dong, H.Z. Safety evaluation of aflatoxin B1 in peanut oil after ultraviolet irradiation detoxification in a photodegradation reactor. Int. J. Food Sci. Technol., 2015, 50, 41-47.
[7]
Liu, R.J.; Wang, R.Q.; Lu, J.; Chang, M.; Jin, Q.Z.; Du, Z.B.; Wang, S.S.; Li, Q.; Wang, X.G. Degradation of AFB1 in aqueous medium by electron beam irradiation: Kinetics, pathway and toxicology. Food Control, 2016, 66, 151-157.
[8]
Xu, D.; Wang, H.; Zhang, Y.; Yang, Z.; Sun, X.L. Inhibition of non-toxigenic Aspergillus niger FS10 isolated from Chinese fermented soybean on growth and aflatoxin B1 production by Aspergillus flavus. Food Control, 2013, 32, 359-365.
[9]
Falguera, V.; Pagán, J.; Garza, S.; Garvín, A.; Ibarz, A. Ultraviolet processing of liquid food: A review: Part 2: Effects on microorganisms and on food components and properties. Food Res. Int., 2011, 44, 1580-1588.
[10]
Pozzo, R.L.; Baltanas, M.A.; Cassano, A.E. Supported titanium oxide as photocatalyst in water decontamination: State of the art. Catal. Today, 1997, 39, 219-231.
[11]
Faustini, M.; Nicole, L.; Boissiere, C.; Innocenzi, P.; Sanchez, C.; Grosso, D. Hydrophobic, antireflective, self-cleaning, and antifogging sol−gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chem. Mater., 2010, 22(15), 4406-4413.
[12]
Wang, Z.; Yao, N.; Hu, X. Single material TiO2 double layers antireflection coating with photocatalytic property prepared by magnetron sputtering technique. Vacuum, 2014, 108, 20-26.
[13]
Bouarioua, A.; Zerdaoui, M. Photocatalytic activities of TiO2 layers immobilized on glass substrates by dip-coating technique toward the decolorization of methyl orange as a model organic pollutant. J. Environ. Chem. Eng., 2017, 5, 1565-1574.
[14]
Hay, S.O.; Obee, T.; Luo, Z.; Jiang, T.; Meng, Y.T.; He, J.K.; Murphy, C.S.; Suit, S. The viability of photocatalysis for air purification. Molecules, 2015, 20(1), 1319-1356.
[15]
Mor, G.; Varghese, O.K.; Paulose, M.; Grimes, G.A. A self-cleaning, room-temperature titania- nanotube hydrogen gas sensor. Sens. Lett., 2003, 1, 42-46.
[16]
Crossland, E.J.; Noel, N.; Sivaram, V.; Leitens, T.; Webber, J.A.A.; Snaith, H.J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 2013, 495, 215-219.
[17]
Samsudin, E.M.; Hamid, S.B.A. Effect of band gap engineering in anionic-doped TiO2 photocatalyst. Appl. Surf. Sci., 2017, 391, 326-336.
[18]
Sun, H.; Wang, S.; Ang, H.M.; Tadé, M.O.; Li, Q. Halogen element modified titanium dioxide for visible light photocatalysis. Chem. Eng. J., 2010, 162, 437-447.
[19]
Sun, W.J.; Li, J.; Yao, G.P.; Jiang, M.; Zhang, F.X. Efficient photo-degradation of 4-nitrophenol by using new CuPp-TiO2 photocatalyst under visible light irradiation. Catal. Commun., 2011, 16, 90-93.
[20]
Livraghi, S.; Czoska, A.M.; Paganini, M.C.; Giamello, E. Preparation and spectroscopic characterization of visible light sensitized N doped TiO2 (rutile). J. Solid State Chem., 2009, 182, 160-164.
[21]
Ho, W.; Yu, J.C.; Lee, S. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J. Solid State Chem., 2006, 179, 1171-1176.
[22]
Chavadej, S.; Phuaphromyod, P.; Gulari, E.; Rangsunvigt, P.; Sreethawong, T. Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique. Chem. Eng. J., 2008, 137, 489-495.
[23]
Siuzdak, K.; Szkoda, M.; Sawczak, M.; Lisowska-Oleksiak, A. Novel nitrogen precursors for electrochemically driven doping of titania nanotubes exhibiting enhanced photoactivity. New J. Chem., 2015, 39, 2741-2751.
[24]
Tang, X.; Li, D. Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. J. Phys. Chem. C, 2008, 112(14), 5405-5409.
[25]
Su, Y.; Xiao, Y.; Fu, X.; Deng, Y.R.; Zhang, F.B. Photocatalytic properties and electronic structures of iodine-doped TiO2 nanotubes. Mater. Res. Bull., 2009, 44, 2169-2173.
[26]
Huang, D.G.; Liao, S.J.; Liu, J.M.; Dang, Z.; Petric, L. Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method. J. Photochem. Photobiol., 2006, 184, 282-288.
[27]
Hong, X.T.; Luo, Z.P.; Batteas, J.D. Enhanced visible-light absorption and dopant distribution of iodine-TiO2 nanoparticles synthesized by a new facile two-step hydrothermal method. J. Solid State Chem., 2011, 184, 2244-2249.
[28]
Bouarioua, A.; Zerdaoui, M. Photocatalytic activities of TiO2 layers immobilized on glass substrates by dip-coating technique toward the decolorization of methyl orange as a model organic pollutant. J. Environ. Chem. Eng., 2017, 5, 1565-1574.
[29]
Noorjahan, M.; Reddy, M.P.; Kumari, V.D.; Lavédrine, B.; Boule, P.; Subrahmanyam, M. Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions. J. Photochem. Photobiol. A: Chem., 2003, 156, 179-187.
[30]
Valtierra, J.M.; Servín, J.G.; Reyes, C.F.; Calixto, S. The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO2 particles deposited on glass microrods. Appl. Surf. Sci., 2006, 252, 3600-3608.
[31]
Singh, S.; Mahalingam, H.; Singh, P.K. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl. Catal. A Gen., 2013, 462-463, 178-195.
[32]
Seabra, M.P.; Pires, R.R.; Labrincha, J.A. Ceramic tiles for photodegradation of Orange II solutions. Chem. Eng. J., 2011, 171, 692-702.
[33]
Konstantinou, I.K.; Sakellarides, T.M.; Sakkas, V.A.; Albanis, T.A. Photocatalytic degradation of selected s-Triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environ. Sci. Technol., 2001, 35(2), 398-405.
[34]
Matsumoto, R.; Nishizawa, Y.; Kataoka, N.; Tanaka, H.; Yoshikawa, H.; Tanuma, S.; Yoshihara, K. Reproducibility of XPS analysis for film thickness of SiO2/Si by active Shirley method. J. Electron. Spectrosc., 2015, 207, 55-59.
[35]
Kim, S.; Choi, W. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path. J. Phys. Chem. B, 2005, 109(11), 5143-5149.
[36]
Tojo, S.; Tachikawa, T.; Fujitsuka, M.; Majima, T. Iodine-doped TiO2 photocatalysts: Correlation between band structure and mechanism. J. Phys. Chem. C, 2008, 112, 14948-14954.
[37]
Yin, W.J.; Chen, S.; Yang, J.H.; Gong, X.G.; Yan, X.F.; Wei, S.H. Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction. Appl. Phys. Lett., 2010, 96, 221901.
[38]
Siuzdak, K.; Szkoda, M.; Sawczak, M.; Oleksiak, A.L. Novel nitrogen precursors for electrochemically driven doping of titania nanotubes exhibiting enhanced photoactivity. New J. Chem., 2015, 39, 2741-2751.
[39]
Yu, J.; Yu, H.; Cheng, B.; Zhou, M.H.; Zhao, X.J. Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. J. Mol. Catal. A-Chem., 2006, 253, 112-118.
[40]
Jiang, X.; Yang, L.; Liu, P.; Li, X.; Shen, J. The photocatalytic and antibacterial activities of neodymium and iodine doped TiO2 nanoparticles. Colloid. Surf. B, 2010, 79, 69-74.
[41]
Song, X.L.; Li, Y.Y.; Wei, Z.D.; Ye, S.Y.; Dionysiou, D.D. Synthesis of BiVO4 /P25 composites for the photocatalytic degradation of ethylene under visible light. Chem. Eng. J., 2017, 314, 443-452.
[42]
Babeleon, P.; Dequiedt, A.S.; Mosefa-Sba, H.; Bourgeoisb, S.; Sibillot, P.; Sacilotti, M. SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films, 1998, 322, 63-67.
[43]
Hong, X.T.; Wang, Z.P.; Cai, W.M.; Lu, F.; Zhang, J.; Yang, Y.Z.; Ma, N.; Liu, Y.J. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater., 2005, 17(6), 1548-1552.
[44]
Song, S.; Tu, J.J.; He, Z.Q.; Hong, F.Y.; Liu, W.P.; Chen, J.M. Visible light-driven iodine-doped titanium dioxide nanotubes prepared by hydrothermal process and post-calcination. Appl. Catal. A, 2010, 378, 169-174.
[45]
Zhang, Q.; Ye, S.Y.; Chen, X.M.; Song, X.L.; Li, L.Q.; Huang, X. Photocatalytic degradation of ethylene using titanium dioxide nanotube arrays with Ag and reduced graphene oxide irradiated by γ-ray radiolysis. Appl. Catal. B-Environ., 2017, 203, 673-683.
[46]
Luo, X.H.; Wang, R.; Wang, L.; Wang, Y.; Chen, Z.X. Structure elucidation and toxicity analyses of the degradation products of aflatoxin B1 by aqueous ozone. Food Control, 2013, 31, 331-336.
[47]
Wang, F.; Xie, F.; Xue, X.F.; Wang, Z.D.; Fan, B.; Ha, Y.M. Structure elucidation and toxicity analyses of the radiolytic products of aflatoxin B1 in methanol–water solution. J. Hazard. Mater., 2011, 192, 1192-1202.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy