Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Antioxidant and Antitumor Metabolites of Saudi Red Sea Seagrasses Halodule uninervis and Thalassia hemprichii

Author(s): Mohamed Ghandourah*, Usama W. Hawas, Lamia T. Abou El-Kassem*, Munir Bamkhrama and Hanan A.A. Taie

Volume 16, Issue 1, 2019

Page: [50 - 58] Pages: 9

DOI: 10.2174/1570178615666180525110832

Price: $65

Abstract

The present study aimed to investigate the chemical constituents, and antioxidants and antitumor activities of the seagrasses Halodule uninervis and Thalassia hemprichii. Seventeen compounds were isolated from both seagrasses, and identified as flavonoids, phenolic acids, nitrogen compound, steroids and fatty acids. Their structures were established by spectral analysis (UV, MS, and 1D- and 2D-NMR) and chemical investigation (for glycosides). The total metabolites of each seagrass and the isolated flavonoids tested in different in vitro assays (DPPH, ABTS, FRAP, Fe2+ chelating, reducing power, and Ehrlich ascites carcinoma cell line) showed significant antioxidant and antitumor activities. H. uninervis extract revealed good antioxidant activities compared to water and butanol extracts of T. hemprichii, while quercetin 3-O-β-glucoside from H. uninervis revealed potent antioxidant activity at concentration of 25µg/ml. Moreover, the seagrasses extracts were displayed mild antitumor activity against Ehrlich ascites carcinoma cells in mice with less undesirable side effects compared to vincristine as a drug control.

Keywords: Flavonoid, Halodule uninervis, Thalassia hemprichii, antioxidant, antitumor, fatty acids.

Graphical Abstract
[1]
Lee, J.; Koo, N.; Min, D.B. Compr. Rev. Food Sci. Food Saf., 2004, 3, 21-33.
[2]
De la Torre-Castro, M.; Ronnback, P. Ocean Coast. Manage., 2004, 47, 361-387.
[3]
Larkum, A.W.D.; Orth, R.J.; Duarte, C.M. Seagrasses: Biology, Ecology and Conservation; Springer: Berlin, 2006.
[4]
Zapata, O.; McMillan, C. Aquat. Bot., 1979, 7, 307-317.
[5]
Qi, S.H.; Huang, L.S.; He, F.; Zhang, S.; Dong, J.D. Biochem. Syst. Ecol., 2012, 43, 128-131.
[6]
Hawas, U.W. Chem. Nat. Compd., 2014, 50, 629-632.
[7]
Hawas, U.W.; Abou El-Kassem, L.T. Nat. Prod. Res., 2017, 31, 2369-2374.
[8]
Neelima, C.; Sarika, S.; Seenivasan, R. Int. J. Adv. Res., 2015, 3, 950-956.
[9]
Supriadi, A.; Baehaki, A.; Pratama, M.C. Der Pharmacia Lett., 2016, 8, 77-79.
[10]
Mahyoub, J.A.; Aziz, A.; Panneerselvam, C.; Murugan, K.; Roni, M.; Trivedi, S.; Nicoletti, M.; Hawas, U.W. J. Cluster Sci., 2017, 28, 565-580.
[11]
Karthikeyan, R.; Sundarapandian, M. J. Pharm. Sci. Res., 2017, 9, 1864-1868.
[12]
Aleem, A.A. Aquat. Bot., 1979, 7, 71-78.
[13]
Gokce, G.; Haznedaroglu, M.Z. J. Ethnopharmacol., 2008, 115, 122-130.
[14]
Halliwell, B. Adv. Pharmacol., 1997, 38, 3-20.
[15]
Benzie, I.F.F.; Strain, J. J. Methods Enzym., 1999, 299, 15-27.
[16]
Rice-Evans, C.A.; Miller, N.T.; Paganga, G. Trends Plant Sci., 1997, 4, 304-309.
[17]
El-Toumy, S.A.; Hawas, U.W.; Taie, H.A.A. Chem. Nat. Compd., 2013, 49(5), 945-995.
[18]
Brand-Williams, W.; Cuvelier, M.; Berset, E. C. Lebensmittel-Wissenschaften und Technol., 1995, 28, 25-30.
[19]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Free Radic. Biol. Med., 1999, 26, 1231-1237.
[20]
Dinis, T.C.P.; Madeira, V.M.C.; Almeida, L.M. Chem. Pharmacol. Bull., 1994, 36, 2090-2097.
[21]
Oyaizu, M. Jpn. J. Nutr. Diest., 1986, 44, 307-315.
[22]
El-Merzabani, M.M.; El-Aaser, A.A.; Attia, M.A.M.; El-Duweini, A.K.; Ghazal, A.H. J. Planta Medica, 1979, 36, 150-155.
[23]
Rajkapoor, B.; Jayakar, B.; Murugesh, N. Indian J. Pharmacol., 2004, 36, 38-40.
[24]
Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed; Iowa State University Press: Iowa, 1980.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy