Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Effects of Stress on the Mucus-microbial Interactions in the Gut

Author(s): Jianwen He, Huiduo Guo, Weijiang Zheng and Wen Yao*

Volume 20, Issue 2, 2019

Page: [155 - 163] Pages: 9

DOI: 10.2174/1389203719666180514152406

Price: $65

Abstract

Stress shows both direct- and indirect-effects on the functions of the gastrointestinal tract, in particular on the mucus physiology and the composition of microbiota. Mucus mainly consists of heavily glycosylated proteins called mucins, which are secreted by goblet cells. The gut mucus layer is a pivotal part of the intestinal protection and colonized by commensal microbes, essential for the development and health of the host. There is a symbiotic interaction between intestinal microbiota and the host cells. On the one hand, mucus provides nutrients for the growth and adhesion of microbes; on the other hand, mucin-degrading bacteria generate energy sources for the host epithelium. However, the mucusmicrobial interaction has rarely been considered in the context of stress exposure. Therefore, this paper principally reviews the effects of stress on both mucus secretion and gut microbiota and is hoped to provide a new perspective for future study.

Keywords: Stress, mucus, mucin, bacterial component, gut microbiota, mucin-degradation.

Graphical Abstract
[1]
Leek, R.G.; Fayer, R. The gastrointestinal ecosystem: A precarious alliance among epithelium, immunity and microbiota. Cell. Microbiol., 2001, 3, 1-11.
[2]
Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol., 2009, 9, 799-809.
[3]
Johansson, M.E.; Larsson, J.M.; Hansson, G.C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4659-4665.
[4]
Derrien, M.; van Passel, M.W.; van de Bovenkamp, J.H.; Schipper, R.G.; de Vos, W.M.; Dekker, J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes, 2010, 1, 254-268.
[5]
Hollingsworth, M.A.; Swanson, B.J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer, 2004, 4, 45-60.
[6]
Johansson, M.E.; Phillipson, M.; Petersson, J.; Velcich, A.; Holm, L.; Hansson, G.C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA, 2008, 105, 15064-15069.
[7]
Hansson, G.C. Role of mucus layers in gut infection and inflammation. Curr. Opin. Microbiol., 2012, 15, 57-62.
[8]
Moran, A.P.; Gupta, A.; Joshi, L. Sweet-talk: Role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut, 2011, 60, 1412-1425.
[9]
Laura, W.; Sylvie, M.; Marie-Louise, N.; Stephan, B.; Joncquel, C.C.M.; Véronique, R.; Catherine, P.; Chantal, B.; Claire, C.; Catherine, R.M. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol., 2013, 11, 1-13.
[10]
Gaskins, H. Immunological aspects of host/microbiota interactions at the intestinal epithelium. Gastrointest. Microbiol., 1997, 2, 537-587.
[11]
Thai, P.; Loukoianov, A.; Wachi, S.; Wu, R. Regulation of airway mucin gene expression. Annu. Rev. Physiol., 2008, 70, 405-429.
[12]
Burger-Van, P.N.; Vincent, A.; Puiman, P.J.; Van, D.S.M.; Bouma, J.; Boehm, G.; van Goudoever, J.B.; Van, S.I.; Renes, I.B. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochem. J., 2009, 420, 211-219.
[13]
Barcelo, A.; Claustre, J.; Moro, F.; Chayvialle, J.A.; Cuber, J.C.; Plaisancié, P. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut, 2000, 46, 218-224.
[14]
Konturek, P.C.; Brzozowski, T.; Konturek, S. Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. J. Physiol. Pharmacol., 2011, 62, 591-599.
[15]
Da, S.S.; Robbe-Masselot, C.; Ait-Belgnaoui, A.; Mancuso, A.; Mercade-Loubière, M.; Salvador-Cartier, C.; Gillet, M.; Ferrier, L.; Loubière, P.; Dague, E. Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: Prevention by a probiotic treatment. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307, G420-G429.
[16]
Bell, A.E.; Sellers, L.A.; Allen, A.; Cunliffe, W.J.; Morris, E.R.; Ross-Murphy, S.B. Properties of gastric and duodenal mucus: Effect of proteolysis, disulfide reduction, bile, acid, ethanol, and hypertonicity on mucus gel structure. Gastroenterology, 1985, 88, 269-280.
[17]
Atuma, C.; Strugala, V.; Allen, A.; Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280, G922-G929.
[18]
Johansson, M.E.; Ambort, D.; Pelaseyed, T.; Schutte, A.; Gustafsson, J.K.; Ermund, A.; Subramani, D.B.; Holmen-Larsson, J.M.; Thomsson, K.A.; Bergstrom, J.H.; van der Post, S.; Rodriguez-Pineiro, A.M.; Sjovall, H.; Backstrom, M.; Hansson, G.C. Composition and functional role of the mucus layers in the intestine. Cell. Mol. Life Sci., 2011, 68, 3635-3641.
[19]
Allen, A.; Flemström, G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am. J. Physiol. Cell Physiol., 2005, 288, C1-C19.
[20]
Allen, A. Mucus — a protective secretion of complexity. Trends Biochem. Sci., 1983, 8, 169-173.
[21]
Deplancke, B.; Gaskins, H.R. Microbial modulation of innate defense: Goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr., 2001, 73, 1131S-1141S.
[22]
Lang, T.; Hansson, G.C.; Samuelsson, T. Gel-forming mucins appeared early in metazoan evolution. Proc. Natl. Acad. Sci. USA, 2007, 104, 16209-16214.
[23]
Perezvilar, J.; Hill, R.L. The structure and assembly of secreted mucins. J. Biol. Chem., 1999, 274, 31751-31754.
[24]
Phillips, T.E.; Phillips, T.H.; Neutra, M.R. Regulation of intestinal goblet cell secretion. III. Isolated intestinal epithelium. Am. J. Physiol., 1984, 247, G674-G681.
[25]
Dekker, J.; Strous, G.J. Covalent oligomerization of rat gastric mucin occurs in the rough endoplasmic reticulum, is N-glycosylation-dependent, and precedes initial O-glycosylation. J. Biol. Chem., 1990, 265, 18116-18122.
[26]
Godl, K.; Johansson, M.E.; Lidell, M.E.; Mörgelin, M.; Karlsson, H.; Olson, F.J.; Gum, J.R. Jr. Kim, Y.S.; Hansson, G.C. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J. Biol. Chem., 2002, 277, 47248-47256.
[27]
Bergstrom, K.S.B.; Kissoonsingh, V.; Gibson, D.L.; Ma, C.; Montero, M.; Sham, H.P.; Ryz, N.; Huang, T.; Velcich, A.; Finlay, B.B. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog., 2010, 6, e1000902.
[28]
Rhodes, J.M. Colonic mucus and mucosal glycoproteins: The key to colitis and cancer? Gut, 1989, 30, 1660-1666.
[29]
Smith, A.C.; Podolsky, D.K. Colonic mucin glycoproteins in health and disease. Clin. Gastroenterol., 1986, 15, 815-837.
[30]
Alexander, C.; Rietschel, E.T. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res., 2001, 7, 167-202.
[31]
Raetz, C.R.H. Biochemistry of endotoxins. Annu. Rev. Biochem., 1990, 59, 129-170.
[32]
Li, J.D.; Dohrman, A.F.; Gallup, M.; Miyata, S.; Gum, J.R.; Kim, Y.S.; Nadel, J.A.; Prince, A.; Basbaum, C.B. Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc. Natl. Acad. Sci. USA, 1997, 94, 967.
[33]
Dohrman, A.; Miyata, S.; Gallup, M.; Li, J.D.; Chapelin, C.; Coste, A.; Escudier, E.; Nadel, J.; Basbaum, C. Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim. Biophys. Acta, 1998, 1406, 251-259.
[34]
Smirnova, M.G.; Guo, L.; Birchall, J.P.; Pearson, J.P. LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell. Immunol., 2003, 221, 42-49.
[35]
Mcnamara, N.; Basbaum, C. Signaling networks controlling mucin production in response to Gram-positive and Gram-negative bacteria. Glycoconj. J., 2001, 18, 715-722.
[36]
Li, J.D.; Feng, W.; Gallup, M.; Kim, J.H.; Gum, J.; Kim, Y.; Basbaum, C. Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc. Natl. Acad. Sci. USA, 1998, 95, 5718-5723.
[37]
Shapiro, L. The bacterial flagellum: From genetic network to complex architecture. Cell, 1995, 80, 525-527.
[38]
Feldman, M.; Bryan, R.; Rajan, S.; Scheffler, L.; Brunnert, S.; Tang, H.; Prince, A. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun., 1998, 66, 43-51.
[39]
Mcnamara, N.; Khong, A.; Mckemy, D.; Caterina, M.; Boyer, J.; Julius, D.; Basbaum, C. ATP transduces signals from ASGM1, a glycolipid that functions as a bacterial receptor. Proc. Natl. Acad. Sci. USA, 2001, 98, 9086-9091.
[40]
Lemjabbar, H.; Basbaum, C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat. Med., 2002, 8, 41-46.
[41]
Scheppach, W. Effects of short chain fatty acids on gut morphology and function. Gut, 1994, 35, S35-S38.
[42]
Butzner, J.D.; Parmar, R.; Bell, C.J.; Dalal, V. Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat. Gut, 1996, 38, 568-573.
[43]
Cook, S.I.; Sellin, J.H. Review article: Short chain fatty acids in health and disease. Aliment. Pharmacol. Ther., 1998, 12, 499-507.
[44]
Bugaut, M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol. B, 1987, 86, 439-472.
[45]
Shimotoyodome, A.; Meguro, S.; Hase, T.; Tokimitsu, I.; Sakata, T. Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2000, 125, 525-531.
[46]
Yajima, T. Chemical specificity of short-chain fatty acid-induced electrogenic secretory response in te rat colonic mucosa. Comp. Biochem. Physiol. A. Physiol., 1989, 93, 851-856.
[47]
Fulde, M.; Hornef, M.W. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol. Rev., 2014, 260, 21-34.
[48]
Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol., 2013, 14, 685-690.
[49]
Noortje, I.; Clara, B.; Hooiveld, G.J.; Jan, D.; Mil, S.W.C.; Michael, M.; Michiel, K.; Roelof, V.D.M. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc. Natl. Acad. Sci. USA, 2015, 112, 10038-10043.
[50]
Reinhardt, C.; Bergentall, M.; Greiner, T.U.; Schaffner, F.; Ostergren-Lundén, G.; Petersen, L.C.; Ruf, W.; Bäckhed, F. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature, 2012, 483, 627-631.
[51]
Neuman, H.; Debelius, J.W.; Knight, R.; Koren, O. Microbial endocrinology: The interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev., 2015, 39, 509-521.
[52]
Yan, J.; Herzog, J.W.; Tsang, K.; Brennan, C.A.; Bower, M.A.; Garrett, W.S.; Sartor, B.R.; Aliprantis, A.O.; Charles, J.F. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. USA, 2016, 113, E7554-E7563.
[53]
Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11, 577-591.
[54]
Koh, A.; Vadder, F.D.; Kovatcheva-Datchary, P.; Ckhed, F.B. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165, 1332-1345.
[55]
Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science, 2016, 307, 1915-1920.
[56]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308, 1635-1638.
[57]
Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R. Evolution of mammals and their gut microbes. Science, 2008, 320, 1647-1651.
[58]
Arumugam, M.; Raes, J.; Pelletier, E.; Paslier, D.L.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M. Enterotypes of the human gut microbiome. Nature, 2013, 506, 516.
[59]
Gu, S.; Chen, D.; Zhang, J.N.; Lv, X.; Wang, K.; Duan, L.P.; Nie, Y.; Wu, X.L. Bacterial community mapping of the mouse gastrointestinal tract. PLoS One, 2013, 8, e74957.
[60]
Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol., 2016, 14, 20-32.
[61]
Thierry, P.; Céline, M.; Catherine, D.; Lionel, F.; Christian, C.; Gianfranco, G.; Sansonetti, P.J. A crypt-specific core microbiota resides in the mouse colon. MBio, 2012, 3, 2153-2154.
[62]
Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90, 859-904.
[63]
Robert, H.; Payros, D.; Pinton, P.; Théodorou, V.; Mercierbonin, M.; Oswald, I.P. Impact of mycotoxins on the intestine: Are mucus and microbiota new targets? J. Toxicol. Environ. Health B Crit. Rev., 2017, 20, 249-275.
[64]
Albenberg, L.; Esipova, T.V.; Judge, C.P.; Bittinger, K.; Chen, J.; Laughlin, A.; Grunberg, S.; Baldassano, R.N.; Lewis, J.D.; Li, H. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology, 2014, 147, 1055-1063.
[65]
Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol., 2014, 12, 661-672.
[66]
Rajilićstojanović, M.; Heilig, H.G.; Tims, S.; Zoetendal, E.G.; de Vos, W.M. Long-term monitoring of the human intestinal microbiota composition. Environ. Microbiol., 2013, 15, 1146-1159.
[67]
Shafquat, A.; Joice, R.; Simmons, S.L.; Huttenhower, C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol., 2014, 22, 261-266.
[68]
Salonen, A.; Vos, W.M.D. Impact of diet on human intestinal microbiota and health. Annu. Rev. Food Sci. Technol., 2014, 5, 239-262.
[69]
Sonnenburg, J.L.; Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.
[70]
Bailey, M.T.; Dowd, S.E.; Parry, N.M.; Galley, J.D.; Schauer, D.B.; Lyte, M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect. Immun., 2010, 78, 1509-1519.
[71]
Bailey, M.T.; Lubach, G.R.; Coe, C.L. Prenatal stress alters bacterial colonization of the gut in infant monkeys. J. Pediatr. Gastroenterol. Nutr., 2004, 38, 414-421.
[72]
Chevalier, C.; Stojanović, O.; Colin, D.J.; Suarezzamorano, N.; Tarallo, V.; Veyratdurebex, C.; Rigo, D.; Fabbiano, S.; Stevanović, A.; Hagemann, S. Gut microbiota orchestrates energy homeostasis during cold. Cell, 2015, 163, 1360-1374.
[73]
Maurice, C.F.; Haiser, H.J.; Turnbaugh, P.J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell, 2013, 152, 39-50.
[74]
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489, 220-230.
[75]
Linden, S.K.; Sutton, P.; Karlsson, N.G.; Korolik, V.; Mcguckin, M.A. Mucins in the mucosal barrier to infection. Mucosal Immunol., 2008, 1, 183-197.
[76]
Levy, G.N.; Aminoff, D. Purification and properties of alpha-N-acetylgalactosaminidase from Clostridium perfringens. J. Biol. Chem., 1980, 255, 11737-11742.
[77]
Prizont, R. Degradation of intestinal glycoproteins by pathogenic Shigella flexneri. Infect. Immun., 1982, 36, 615-620.
[78]
Slomiany, B.L.; Murty, V.L.; Piotrowski, J.; Liau, Y.H.; Sundaram, P.; Slomiany, A. Glycosulfatase activity of Helicobacter pylori toward gastric mucin. Biochem. Biophys. Res. Commun., 1992, 183, 506-513.
[79]
Norin, K.E.; Gustafsson, B.E.; Lindblad, B.S.; Midtvedt, T. The Establishment of some microflora associated biochemical characteristics in feces from children during the first years of life. Acta Paediatr. Scand., 1985, 74, 207-212.
[80]
Midtvedt, A.C.; Carlstedt-Duke, B.; Midtvedt, T. Establishment of a mucin-degrading intestinal microflora during the first two years of human life. J. Pediatr. Gastroenterol. Nutr., 1994, 18, 321-326.
[81]
Martens, E.C.; Chiang, H.C.; Gordon, J.I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe, 2008, 4, 447-457.
[82]
Salyers, A.A.; Vercellotti, J.R.; West, S.E.; Wilkins, T.D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol., 1977, 33, 319-322.
[83]
Martens, E.C.; Lowe, E.C.; Chiang, H.; Pudlo, N.A.; Wu, M.; Mcnulty, N.P.; Abbott, D.W.; Henrissat, B.; Gilbert, H.J.; Bolam, D.N. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol., 2011, 9, e1001221.
[84]
Marcobal, A.; Barboza, M.; Sonnenburg, E.D.; Pudlo, N.; Martens, E.C.; Desai, P.; Lebrilla, C.B.; Weimer, B.C.; Mills, D.A.; German, J.B.; Sonnenburg, J.L. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe, 2011, 10, 507-514.
[85]
Nakayamaimaohji, H.; Ichimura, M.; Iwasa, T.; Okada, N.; Ohnishi, Y.; Kuwahara, T. Characterization of a gene cluster for sialoglycoconjugate utilization in Bacteroides fragilis. J. Med. Invest., 2012, 59, 79-94.
[86]
Png, C.W.; Lindén, S.K.; Gilshenan, K.S.; Zoetendal, E.G.; Mcsweeney, C.S.; Sly, L.I.; Mcguckin, M.A.; Florin, T.H. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol., 2010, 105, 2420-2428.
[87]
Hoskins, L.C.; Agustines, M.; Mckee, W.B.; Boulding, E.T.; Kriaris, M.; Niedermeyer, G. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest., 1985, 75, 944-953.
[88]
Hoskins, L.C.; Boulding, E.T.; Gerken, T.A.; Harouny, V.R.; Kriaris, M.S. Mucin glycoprotein degradation by mucin oligosaccharide-degrading strains of human faecal bacteria. characterisation of saccharide cleavage products and their potential role in nutritional support of larger faecal bacterial populations. Microb. Ecol. Health Dis., 1992, 5, 193-207.
[89]
Corfield, A.P.; Wagner, S.A.; Clamp, J.R.; Kriaris, M.S.; Hoskins, L.C. Mucin degradation in the human colon: Production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect. Immun., 1992, 60, 3971-3978.
[90]
Crost, E.H.; Tailford, L.E.; Le, G.G.; Fons, M.; Henrissat, B.; Juge, N. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS One, 2013, 8, e76341.
[91]
Derrien, M.; Vaughan, E.E.; Plugge, C.M.; de Vos, W.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol., 2004, 54, 1469-1476.
[92]
Collado, M.C.; Derrien, M.; Isolauri, E.; Vos, W.M.D.; Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol., 2007, 73, 7767-7770.
[93]
Derrien, M.; Collado, M.C.; Benamor, K.; Salminen, S.; Vos, W.M.D. The mucin degrader akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol., 2008, 74, 1646-1648.
[94]
Kanengoni, A.T.; Chimonyo, M.; Tasara, T.; Cormican, P.; Chapwanya, A.; Ndimba, B.K.; Dzama, K. A comparison of faecal microbial populations of South African Windsnyer-type indigenous pigs (SAWIPs) and Large White × Landrace (LW × LR) crosses fed diets containing ensiled maize cobs. FEMS Microbiol. Lett., 2015, 362(13), fnv100.
[95]
Rodriguez, C.; Taminiau, B.; Brévers, B.; Avesani, V.; Broeck, J.V.; Leroux, A.; Gallot, M.; Bruwier, A.; Amory, H.; Delmée, M. Faecal microbiota characterisation of horses using 16 rdna barcoded pyrosequencing, and carriage rate of clostridium difficile at hospital admission. BMC Microbiol., 2015, 15, 181.
[96]
Costa, M.C.; Stämpfli, H.R.; Allen‐Vercoe, E.; Weese, J.S. Development of the faecal microbiota in foals. Equine Vet. J., 2016, 48, 681-688.
[97]
Bo, Z.; Han, S.; Ping, W.; Wen, B.; Jian, W.; Wei, G.; Yu, Z.; Dan, D.; Fu, X.; Kong, F. The bacterial communities associated with fecal types and body weight of rex rabbits. Sci. Rep., 2015, 5, 9342.
[98]
Derrien, M. Mucin utilisation and host interactions of the novel intestinal microbe Akkermansia muciniphila. Wur Wageningen Ur., 2007, PhD. thesis Wageningen University, Wageningen, The Netherlands, with summary in Dutch and French..
[99]
Remely, M.; Tesar, I.; Hippe, B.; Gnauer, S.; Rust, P.; Haslberger, A.G. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef. Microbes, 2015, 6, 431-439.
[100]
Escobar, J.S.; Klotz, B.; Valdes, B.E.; Agudelo, G.M. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol., 2014, 14, 1-14.
[101]
Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA, 2013, 110, 9066-9071.
[102]
Hoskins, L.C.; Boulding, E.T. Mucin degradation in human colon ecosystems: Evidence for the existence and role of bacterial subpopulations producing glycosidase as extracellular enzymes. J. Clin. Invest., 1981, 67, 163-172.
[103]
Lombard, V.; Ramulu, H.G.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res., 2014, 42, 490-495.
[104]
Tailford, L.E.; Crost, E.H.; Devon, K.; Nathalie, J. Mucin glycan foraging in the human gut microbiome. Front. Genet., 2015, 6, 81.
[105]
Selye, H. A syndrome produced by diverse nocuous agents. Nature, 1936, 138, 32.
[106]
Söderholm, J.D.; Perdue, M.H. II. Stress and intestinal barrier function. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280, G7-G13.
[107]
Nakade, Y.; Fukuda, H.; Iwa, M.; Tsukamoto, K.; Yanagi, H.; Yamamura, T.; Mantyh, C.; Pappas, T.N.; Takahashi, T. Restraint stress stimulates colonic motility via central corticotropin-releasing factor and peripheral 5-HT 3 receptors in conscious rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292, G1037-G1044.
[108]
Konturek, S.J.; Brzozowski, T.; Konturek, P.C.; Zwirska‐Korczala, K.; Reiter, R.J. Day/night differences in stress‐induced gastric lesions in rats with an intact pineal gland or after pinealectomy. J. Pineal Res., 2008, 44, 408-415.
[109]
Lyte, M.; Vulchanova, L.; Brown, D.R. Stress at the intestinal surface: catecholamines and mucosa–bacteria interactions. Cell Tissue Res., 2011, 343, 23-32.
[110]
Bailey, M.T.; Coe, C.L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol., 1999, 35, 146-155.
[111]
Knowles, S.R.; Nelson, E.A.; Palombo, E.A. Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: A possible mechanism underlying susceptibility to illness. Biol. Psychol., 2008, 77, 132-137.
[112]
Lizko, N.N. Stress and intestinal microflora. Mol. Nutr. Food Res., 1987, 31, 443-447.
[113]
Lenz, H.J.; Drüge, G. Neurohumoral pathways mediating stress-induced inhibition of gastric acid secretion in rats. Gastroenterology, 1990, 98, 1490-1492.
[114]
Lenz, H.J. Neurohumoral pathways mediating changes in rat gastrointestinal transit. Gastroenterology, 1989, 97, 216-218.
[115]
Lenz, H.J. Regulation of duodenal bicarbonate secretion during stress by corticotropin-releasing factor and beta-endorphin. Proc. Natl. Acad. Sci. USA, 1989, 86, 1417-1420.
[116]
Lutgendorff, F.; Akkermans, L.M.; Söderholm, J.D. The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr. Mol. Med., 2008, 8, 282-298.
[117]
Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol., 2014, 28, 1221-1238.
[118]
Pigrau, M.; Rodiño‐Janeiro, B.; Casado‐Bedmar, M.; Lobo, B.; Vicario, M.; Santos, J.; Alonso‐Cotoner, C. The joint power of sex and stress to modulate brain–gut–microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome. Neurogastroenterol. Motil., 2016, 28, 463-486.
[119]
Dinan, T.G.; Cryan, J.F. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 2012, 37, 1369-1378.
[120]
Taché, Y.; Bonaz, B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J. Clin. Invest., 2007, 117, 33-40.
[121]
Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2010, 558, 263-275.
[122]
Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, 18, 666-673.
[123]
Castagliuolo, I.; Lamount, J.T.; Qiu, B.; Fleming, S.M.; Bhaskar, K.R.; Nikulasson, S.T.; Kornetsky, C.; Pothoulakis, C. Acute stress causes mucin release from rat colon: Role of corticotropin releasing factor and mast cells. Am. J. Physiol., 1996, 271, 884-892.
[124]
O’Malley, D.; Julio-pieper, M.; Gibney, S.M.; Dinan, T.G.; Cryan, J.F. Distinct alterations in colonic morphology and physiology in two rat models of enhanced stress-induced anxiety and depression-like behaviour. Stress, 2010, 13, 114-122.
[125]
Söderholm, J.D.; Yang, P.C.; Ceponis, P.; Vohra, A.; Riddell, R.; Sherman, P.M.; Perdue, M.H. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology, 2002, 123, 1099.
[126]
Pfeiffer, C.J.; Qiu, B.; Lam, S.K. Reduction of colonic mucus by repeated short-term stress enhances experimental colitis in rats. J. Physiol. Paris, 2001, 95, 81-87.
[127]
Shigeshiro, M.; Tanabe, S.; Suzuki, T. Repeated exposure to water immersion stress reduces the Muc2 gene level in the rat colon via two distinct mechanisms. Brain Behav. Immun., 2012, 26, 1061-1065.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy