Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

An Outbreak of ESBL-producing Klebsiella pneumoniae in an Iranian Referral Hospital: Epidemiology and Molecular Typing

Author(s): Shima Mahmoudi, Babak Pourakbari, Aliakbar Rahbarimanesh, Mohammad Reza Abdosalehi, Keyghobad Ghadiri and Setareh Mamishi*

Volume 19, Issue 1, 2019

Page: [46 - 54] Pages: 9

DOI: 10.2174/1871526518666180507121831

Price: $65

Abstract

Introduction: Klebsiella pneumoniae is a common cause of nosocomial infections; however, there is limited information in Iran regarding nosocomial outbreaks due to extended-spectrum β–lactamase (ESBL) producing K pneumoniae strains, particularly using molecular methods. The present study focused on the molecular mechanism of ESBL resistance and genetic relatedness in K. pneumoniae isolates causing nosocomial infections in an Iranian referral hospital.

Material and Methods: This study evaluated the antimicrobial resistance and molecular epidemiology of K. pneumoniae causing nosocomial infections in children between October 2013 and March 2014. The ESBL detection was carried out for all the isolates by the CLSI method and PCR was carried out for the detection of the blaSHV, blaTEM, and blaCTX-M genes among ESBL-producing K. pneumonia. Molecular typing of the K. pneumoniae was performed using random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR).

Results: A total of 30 isolates of K. pneumoniae were used for epidemiological analysis. High rates of resistance to cefotaxime (n=29, 97%), cefazolin (n=29, 97%), cefepime (n=25, 83%) and gentamicin (n=23, 77%) were observed. A total of 29 strains (97%) produced ESBLs. The frequency of blaSHV, blaCTX-M and blaTEM genes among these isolates was 83% (n=25), 70% (n=21) and 57% (n=17), respectively. Surprisingly 11 isolated (37%) carried blaSHV, blaCTX-M and blaTEM genes simultaneously. Moreover, the concurrent presence of “blaSHV and blaCTX-M” and “blaSHV and blaTEM” was seen in 8 (27%) and 4 (13%) isolates, respectively. RAPDPCR analyses revealed that K. pneumoniae isolates belonged to 2 RAPD-PCR types among which one cluster counted for 28 isolates.

Conclusion: To our knowledge, this is the first published report of a nosocomial outbreak of ESBL-producing K. pneumoniae in children in Iran. Although the epidemiology of nosocomial infections with ESBL-producing organisms has not yet been explored in depth in Iran, our findings suggest that ESBL-producing organisms are already an established public health threat in our country.

Keywords: Klebsiella pneumoniae, extended-spectrum β-lactamase, molecular typing, nosocomial infection, epidemiology, molecular typing.

Graphical Abstract
[1]
Pourakbari, B.; Rezaizadeh, G.; Mahmoudi, S.; Mamishi, S. Epidemiology of nosocomial infections in pediatric patients in an Iranian referral hospital. J. Prev. Med. Hyg., 2012, 53(4), 204-206.
[2]
Buys, H.; Muloiwa, R.; Bamford, C.; Eley, B. Klebsiella pneumoniae bloodstream infections at a South African children’s hospital 2006-2011, a cross-sectional study. BMC Infect. Dis., 2016, 16(1), 570.
[3]
Pourakbari, B.; Ferdosian, F.; Mahmoudi, S.; Teymuri, M.; Sabouni, F.; Heydari, H.; Ashtiani, M.T.; Mamishi, S. Increase resistant rates and ESBL production between E. coli isolates causing urinary tract infection in young patients from Iran. Braz. J. Microbiol., 2012, 43(2), 766-769.
[4]
Tal Jasper, R.; Coyle, J.R.; Katz, D.E.; Marchaim, D. The complex epidemiology of extended-spectrum β-lactamase-producing Enterobacteriaceae. Future Microbiol., 2015, 10(5), 819-839.
[5]
Pitout, J.D.; Nordmann, P.; Laupland, K.B.; Poirel, L. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J. Antimicrob. Chemother., 2005, 56(1), 52-59.
[6]
Colodner, R.; Rock, W.; Chazan, B.; Keller, N.; Guy, N.; Sakran, W.; Raz, R. Risk factors for the development of extended-spectrum beta-lactamase-producing bacteria in nonhospitalized patients. Eur. J. Clin. Microbiol. Infect. Dis., 2004, 23(3), 163-167.
[7]
Ben-Ami, R.; Rodríguez-Baño, J.; Arslan, H.; Pitout, J.D.; Quentin, C.; Calbo, E.S.; Azap, O.K.; Arpin, C.; Pascual, A.; Livermore, D.M.; Garau, J.; Carmeli, Y. A multinational survey of risk factors for infection with extended-spectrum β-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin. Infect. Dis., 2009, 49(5), 682-690.
[8]
Liakopoulos, A.; Mevius, D.; Ceccarelli, D. A Review of SHV Extended-Spectrum β-Lactamases: Neglected Yet Ubiquitous. Front. Microbiol., 2016, 7, 1374.
[9]
Stapleton, P.J.; Murphy, M.; McCallion, N.; Brennan, M.; Cunney, R.; Drew, R.J. Outbreaks of extended spectrum beta-lactamase-producing Enterobacteriaceae in neonatal intensive care units: a systematic review. Arch. Dis. Child. Fetal Neonatal Ed., 2016, 101(1), F72-F78.
[10]
Naas, T.; Cuzon, G.; Robinson, A.L.; Andrianirina, Z.; Imbert, P.; Ratsima, E.; Ranosiarisoa, Z.N.; Nordmann, P.; Raymond, J. Neonatal infections with multidrug-resistant ESBL-producing E. cloacae and K. pneumoniae in Neonatal Units of two different Hospitals in Antananarivo, Madagascar. BMC Infect. Dis., 2016, 16, 275.
[11]
Du, B.; Long, Y.; Liu, H.; Chen, D.; Liu, D.; Xu, Y.; Xie, X. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. Intensive Care Med., 2002, 28(12), 1718-1723.
[12]
Lautenbach, E.; Patel, J.B.; Bilker, W.B.; Edelstein, P.H.; Fishman, N.O. Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin. Infect. Dis., 2001, 32(8), 1162-1171.
[13]
Garner, J.S.; Jarvis, W.R.; Emori, T.G.; Horan, T.C.; Hughes, J.M. CDC definitions for nosocomial infections, 1988. Am. J. Infect. Control, 1988, 16(3), 128-140.
[14]
Clinical Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Vol. 33. Wayne, Pennsylvania, USA: Clinical Laboratory Standard Institute, 2013.
[15]
Pourakbari, B. Molecular characterization of extended spectrum beta-lactamase among escherichia coli clinical isolates causing urinary tract infections in an iranian referral pediatrics center.,
[16]
Deschaght, P.; Van Simaey, L.; Decat, E.; Van Mechelen, E.; Brisse, S.; Vaneechoutte, M. Rapid genotyping of Achromobacter xylosoxidans, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia isolates using melting curve analysis of RAPD-generated DNA fragments (McRAPD). Res. Microbiol., 2011, 162(4), 386-392.
[17]
Turton, J.F.; Kaufmann, M.E.; Warner, M.; Coelho, J.; Dijkshoorn, L.; van der Reijden, T.; Pitt, T.L. A prevalent, multiresistant clone of Acinetobacter baumannii in Southeast England. J. Hosp. Infect., 2004, 58(3), 170-179.
[18]
Reinert, R.R.; Low, D.E.; Rossi, F.; Zhang, X.; Wattal, C.; Dowzicky, M.J. Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J. Antimicrob. Chemother., 2007, 60(5), 1018-1029.
[19]
Bradford, P.A. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev., 2001, 14(4), 933-951.
[20]
Cantón, R.; González-Alba, J.M.; Galán, J.C.; Enzymes, C.T.X-M. Origin and Diffusion. Front. Microbiol., 2012, 3, 110.
[21]
Feizabadi, M.M.; Mahamadi-Yeganeh, S.; Mirsalehian, A.; Mirafshar, S.M.; Mahboobi, M.; Nili, F.; Yadegarinia, D. Genetic characterization of ESBL producing strains of Klebsiella pneumoniae from Tehran hospitals. J. Infect. Dev. Ctries., 2010, 4(10), 609-615.
[22]
Calbo, E.; Garau, J. The changing epidemiology of hospital outbreaks due to ESBL-producing Klebsiella pneumoniae: the CTX-M-15 type consolidation. Future Microbiol., 2015, 10(6), 1063-1075.
[23]
Latifpour, M.; Gholipour, A.; Damavandi, M.S. Prevalence of Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Isolates in Nosocomial and Community-Acquired Urinary Tract Infections. Jundishapur J. Microbiol., 2016, 9(3), e31179.
[24]
Mansury, D.; Motamedifar, M.; Sarvari, J.; Shirazi, B.; Khaledi, A. Antibiotic susceptibility pattern and identification of extended spectrum β-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae from Shiraz, Iran. Iran. J. Microbiol., 2016, 8(1), 55-61.
[25]
Roy, S.; Gaind, R.; Chellani, H.; Mohanty, S.; Datta, S.; Singh, A.K.; Basu, S. Neonatal septicaemia caused by diverse clones of Klebsiella pneumoniae & Escherichia coli harbouring blaCTX-M-15. Indian J. Med. Res., 2013, 137(4), 791-799.
[26]
Rodriguez-Villalobos, H.; Bogaerts, P.; Berhin, C.; Bauraing, C.; Deplano, A.; Montesinos, I.; de Mendonça, R.; Jans, B.; Glupczynski, Y. Trends in production of extended-spectrum β-lactamases among Enterobacteriaceae of clinical interest: results of a nationwide survey in Belgian hospitals. J. Antimicrob. Chemother., 2011, 66(1), 37-47.
[27]
Hawkey, P.M.; Jones, A.M. The changing epidemiology of resistance. J. Antimicrob. Chemother., 2009, 64(Suppl. 1), i3-i10.
[28]
Bush, K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr. Opin. Microbiol., 2010, 13(5), 558-564.
[29]
Cantón, R.; Coque, T.M. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol., 2006, 9(5), 466-475.
[30]
Woodford, N.; Turton, J.F.; Livermore, D.M. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev., 2011, 35(5), 736-755.
[31]
Geraci, D.M.; Bonura, C.; Giuffrè, M.; Saporito, L.; Graziano, G.; Aleo, A.; Fasciana, T.; Di Bernardo, F.; Stampone, T.; Palma, D.M.; Mammina, C. Is the monoclonal spread of the ST258, KPC-3-producing clone being replaced in southern Italy by the dissemination of multiple clones of carbapenem-nonsusceptible, KPC-3-producing Klebsiella pneumoniae? Clin. Microbiol. Infect., 2015, 21(3), e15-e17.
[32]
Bonura, C.; Giuffrè, M.; Aleo, A.; Fasciana, T.; Di Bernardo, F.; Stampone, T.; Giammanco, A.; Palma, D.M.; Mammina, C. An update of the evolving epidemic of blaKPC carrying Klebsiella pneumoniae in Sicily, Italy, 2014: emergence of multiple non-ST258 clones. PLoS One, 2015, 10(7), e0132936.
[33]
Abdel-Hady, H.; Hawas, S.; El-Daker, M.; El-Kady, R. Extended-spectrum β-lactamase producing Klebsiella pneumoniae in neonatal intensive care unit. J. Perinatol., 2008, 28(10), 685-690.
[34]
Brady, M.T. Health care-associated infections in the neonatal intensive care unit. Am. J. Infect. Control, 2005, 33(5), 268-275.
[35]
Martinez-Aguilar, G.; Alpuche-Aranda, C.M.; Anaya, C.; Alcantar-Curiel, D.; Gayosso, C.; Daza, C.; Mijares, C.; Tinoco, J.C.; Santos, J.I. Outbreak of nosocomial sepsis and pneumonia in a newborn intensive care unit by multiresistant extended-spectrum beta-lactamase-producing Klebsiella pneumoniae: high impact on mortality. Infect. Control Hosp. Epidemiol., 2001, 22(11), 725-728.
[36]
Coque, T.M.; Baquero, F.; Canton, R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill., 2008, 13(47), 19044.
[37]
Rettedal, S.; Löhr, I.H.; Natås, O.; Giske, C.G.; Sundsfjord, A.; Øymar, K. First outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a Norwegian neonatal intensive care unit; associated with contaminated breast milk and resolved by strict cohorting. APMIS, 2012, 120(8), 612-621.
[38]
Schwaber, M.J.; Navon-Venezia, S.; Kaye, K.S.; Ben-Ami, R.; Schwartz, D.; Carmeli, Y. Clinical and economic impact of bacteremia with extended- spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother., 2006, 50(4), 1257-1262.
[39]
Schwaber, M.J.; Navon-Venezia, S.; Schwartz, D.; Carmeli, Y. High levels of antimicrobial coresistance among extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother., 2005, 49(5), 2137-2139.
[40]
Mamishi, S.; Pourakbari, B.; Teymuri, M.; Babamahmoodi, A.; Mahmoudi, S. Management of hospital infection control in iran: a need for implementation of multidisciplinary approach. Osong Public Health Res. Perspect., 2014, 5(4), 179-186.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy