Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

General Research Article

Class II Hydrophobin HFBII: A Potential Carrier for Antitumor Agents

Author(s): Mohammadreza Khalesi*, Fatemeh Mamashli, Bahram Goliaei, Ali A. Moosavi-Movahedi and Guy Derdelinckx

Volume 16, Issue 1, 2020

Page: [80 - 84] Pages: 5

DOI: 10.2174/1573407214666180420092631

Price: $65

Abstract

Background: Class II hydrophobin HFBII is a fungal protein with potential applications in pharmaceutical industry. Nevertheless, the antitumor activity of this protein has not been reported.

Methods: In this study, natural type of Trichoderma reesei was cultivated in a submerged bioreactor to produce hydrophobin HFBII. The protein was purified using a reversed phase liquid chromatography, verified by MALDI-TOF, and then examined for its anticancer activity against T47D breast tumor cell line.

Results: Different concentrations of hydrophobin HFBII from 1 nM to 500 μM were examined for this experiment. Hydrophobin HFBII with molecular weights of 7.0-7.2 kDa was achieved. The results of MTT assay showed that from the concentration of 100 μM and upwards, hydrophobin HFBII adversely affected the viability of the breast tumor cells. The IC50 value was reported to be 131 μM. Class II hydrophobin seems to be a very effective carrier for antitumor agent.

Conclusion: This is the first report of HFBII cytotoxicity. However, there is lack of information regarding HFBII’s mechanism of action in cell death induction. Since, HFBII could play important roles in biomedicine, whether as a drug or a carrier for various kinds of pharmaceuticals, it is strongly suggested that its biological effects would be evaluated in detail.

Keywords: HFBII, hydrophobin, Trichoderma reesei, drug delivery, antitumor, filamentous fungi.

Graphical Abstract
[1]
Liu, S-R.; Ke, B-R.; Zhang, W-R.; Liu, X-R.; Wu, X-P. Breeding of new Ganoderma lucidum strains simultaneously rich in polysaccharides and triterpenes by mating basidiospore-derived monokaryons of two commercial cultivars. Sci. Hortic. (Amsterdam), 2017, 216, 58-65.
[http://dx.doi.org/10.1016/j.scienta.2016.12.016]
[2]
Zhao, Y.M.; Wang, J.; Wu, Z.G.; Yang, J.M.; Li, W.; Shen, L.X. Extraction, purification and anti-proliferative activities of polysaccharides from Lentinus edodes. Int. J. Biol. Macromol., 2016, 93(Pt A), 136-144.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.100] [PMID: 27246376]
[3]
Wang, C.; Chen, Z.; Pan, Y.; Gao, X.; Chen, H. Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice. Food Chem. Toxicol., 2017, 108(Pt B), 498-509.
[http://dx.doi.org/10.1016/j.fct.2017.01.007] [PMID: 28087233]
[4]
Linder, M.B. Hydrophobins: Proteins that self-assemble at interfaces. Curr. Opin. Colloid Interface Sci., 2009, 14(5), 356-363.
[http://dx.doi.org/10.1016/j.cocis.2009.04.001]
[5]
Diniz, M.L.P.E.; GC Poiani, J. A Taft, C.; HTP da Silva, C., Structure-based drug design, molecular dynamics and ADME/Tox to investigate protein kinase anti-cancer agents. Curr. Bioact. Compd., 2017, 13(3), 213-222.
[http://dx.doi.org/10.2174/1573407212666160607093114]
[6]
Tripathi, L.; Kumar, P.; Singh, R. A review on extraction, synthesis and anticancer activity of betulinic acid. Curr. Bioact. Compd., 2009, 5(2), 160-168.
[http://dx.doi.org/10.2174/157340709788452019]
[7]
Khalesi, M.; Gebruers, K.; Derdelinckx, G. Recent advances in fungal hydrophobin towards using in industry. Protein J., 2015, 34(4), 243-255.
[http://dx.doi.org/10.1007/s10930-015-9621-2] [PMID: 26208665]
[8]
Stanimirova, R.D.; Gurkov, T.D.; Kralchevsky, P.A.; Balashev, K.T.; Stoyanov, S.D.; Pelan, E.G. Surface pressure and elasticity of hydrophobin HFBII layers on the air-water interface: rheology versus structure detected by AFM imaging. Langmuir, 2013, 29(20), 6053-6067.
[http://dx.doi.org/10.1021/la4005104] [PMID: 23611592]
[9]
Cox, A.R.; Cagnol, F.; Russell, A.B.; Izzard, M.J. Surface properties of class ii hydrophobins from Trichoderma reesei and influence on bubble stability. Langmuir, 2007, 23(15), 7995-8002.
[http://dx.doi.org/10.1021/la700451g] [PMID: 17580918]
[10]
Basheva, E.S.; Kralchevsky, P.A.; Christov, N.C.; Danov, K.D.; Stoyanov, S.D.; Blijdenstein, T.B.; Kim, H-J.; Pelan, E.G.; Lips, A. Unique properties of bubbles and foam films stabilized by HFBII hydrophobin. Langmuir, 2011, 27(6), 2382-2392.
[http://dx.doi.org/10.1021/la104726w] [PMID: 21319779]
[11]
Kallio, J.M.; Rouvinen, J. Amphiphilic nanotubes in the crystal structure of a biosurfactant protein hydrophobin HFBII. Chem. Commun. (Camb.), 2011, 47(35), 9843-9845.
[http://dx.doi.org/10.1039/c1cc13139g] [PMID: 21808803]
[12]
Khalesi, M.; Mandelings, N.; Herrera‐Malaver, B.; Riveros‐Galan, D.; Gebruers, K.; Derdelinckx, G. Improvement of the retention of ocimene in water phase using Class II hydrophobin HFBII. Flavour Fragrance J., 2015, 30(6), 451-458.
[http://dx.doi.org/10.1002/ffj.3260]
[13]
Valo, H.K.; Laaksonen, P.H.; Peltonen, L.J.; Linder, M.B.; Hirvonen, J.T.; Laaksonen, T.J. Multifunctional hydrophobin: toward functional coatings for drug nanoparticles. ACS Nano, 2010, 4(3), 1750-1758.
[http://dx.doi.org/10.1021/nn9017558] [PMID: 20210303]
[14]
Shivakumar, H.; Repka, M.; Murthy, S.N. Transungual drug delivery: An update. J. Drug Deliv. Sci. Technol., 2014, 24(3), 301-310.
[http://dx.doi.org/10.1016/S1773-2247(14)50049-4]
[15]
Akanbi, M.H.J.; Post, E.; van Putten, S.M.; de Vries, L.; Smisterova, J.; Meter-Arkema, A.H.; Wösten, H.A.; Rink, R.; Scholtmeijer, K. The antitumor activity of hydrophobin SC3, a fungal protein. Appl. Microbiol. Biotechnol., 2013, 97(10), 4385-4392.
[http://dx.doi.org/10.1007/s00253-012-4311-x] [PMID: 22846904]
[16]
Linder, M.; Szilvay, G.R.; Nakari-Setälä, T.; Söderlund, H.; Penttilä, M. Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei. Protein Sci., 2002, 11(9), 2257-2266.
[http://dx.doi.org/10.1110/ps.0207902] [PMID: 12192081]
[17]
Sarparanta, M.; Bimbo, L.M.; Rytkönen, J.; Mäkilä, E.; Laaksonen, T.J.; Laaksonen, P.; Nyman, M.; Salonen, J.; Linder, M.B.; Hirvonen, J.; Santos, H.A.; Airaksinen, A.J. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol. Pharm., 2012, 9(3), 654-663.
[http://dx.doi.org/10.1021/mp200611d] [PMID: 22277076]
[18]
Sarparanta, M.P.; Bimbo, L.M.; Mäkilä, E.M.; Salonen, J.J.; Laaksonen, P.H.; Helariutta, A.M.; Linder, M.B.; Hirvonen, J.T.; Laaksonen, T.J.; Santos, H.A.; Airaksinen, A.J. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials, 2012, 33(11), 3353-3362.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.029] [PMID: 22285465]
[19]
Tuomela, A.; Saarinen, J.; Strachan, C.J.; Hirvonen, J.; Peltonen, L. Production, applications and in vivo fate of drug nanocrystals. J. Drug Deliv. Sci. Technol., 2016, 34, 21-31.
[http://dx.doi.org/10.1016/j.jddst.2016.02.006]
[20]
Hassan Khan, M.T.; Ather, A. Molecules from nature: Modulating the expression of estrogen receptor genes in breast cancer cells. Curr. Bioact. Compd., 2006, 2(2), 143-150.
[http://dx.doi.org/10.2174/157340706777435202]
[21]
Bailey, M.J.; Askolin, S.; Hörhammer, N.; Tenkanen, M.; Linder, M.; Penttilä, M.; Nakari-Setälä, T. Process technological effects of deletion and amplification of hydrophobins I and II in transformants of Trichoderma reesei. Appl. Microbiol. Biotechnol., 2002, 58(6), 721-727.
[http://dx.doi.org/10.1007/s00253-002-0966-z] [PMID: 12021790]
[22]
Khalesi, M.; Mandelings, N.; Shokribousjein, Z.; Riveros-Galan, D.; Verachtert, H.; Gebruers, K.; Delvigne, F.; Vankelecom, I.; Derdelinckx, G. Biophysical characterisation of hydrophobin enriched foamate. Cerevisia (Gedrukt), 2014, 38(4), 129-134.
[http://dx.doi.org/10.1016/j.cervis.2014.04.003]
[23]
Bigdeli, B.; Goliaei, B.; Masoudi-Khoram, N.; Jooyan, N.; Nikoofar, A.; Rouhani, M.; Haghparast, A.; Mamashli, F. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis. Toxicol. Appl. Pharmacol., 2016, 313, 180-194.
[http://dx.doi.org/10.1016/j.taap.2016.10.021] [PMID: 27984132]
[24]
Neuhof, T.; Dieckmann, R.; Druzhinina, I.S.; Kubicek, C.P.; Nakari-Setälä, T.; Penttilä, M.; von Döhren, H. Direct identification of hydrophobins and their processing in Trichoderma using intact-cell MALDI-TOF MS. FEBS J., 2007, 274(3), 841-852.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05636.x] [PMID: 17288563]
[25]
Astoreca, A.; Magnoli, C.; Barberis, C.; Chiacchiera, S.M.; Combina, M.; Dalcero, A. Ochratoxin A production in relation to ecophysiological factors by Aspergillus section Nigri strains isolated from different substrates in Argentina. Sci. Total Environ., 2007, 388(1-3), 16-23.
[http://dx.doi.org/10.1016/j.scitotenv.2007.07.028] [PMID: 17920659]
[26]
Khalesi, M.; Zune, Q.; Telek, S.; Riveros-Galan, D.; Verachtert, H.; Toye, D.; Gebruers, K.; Derdelinckx, G.; Delvigne, F. Fungal biofilm reactor improves the productivity of hydrophobin HFBII. Biochem. Eng. J., 2014, 88, 171-178.
[http://dx.doi.org/10.1016/j.bej.2014.05.001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy