Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Fabrication and Radiation Dose Properties of Well-dispersed Calcium Borate Nanoparticles

Author(s): Maryam E. Haghiri*, Nayereh Soltani, Elias Saion, Azra Izanloo, Ghazaleh Bahmanrokh and Mina Askari

Volume 9, Issue 2, 2019

Page: [198 - 209] Pages: 12

DOI: 10.2174/2210681207666171107142451

Price: $65

Abstract

Background: Development of novel materials represents a new and fast evolving application of research in physics and medicine. The area of nanomaterial research has presented interesting physical and chemical properties that cannot be obtained from their macroscopic counterparts.

Objective: This study has attempted to attain well-dispersed nanoparticles by variation of polymer concentration.

Methods: In order to obtain the calcium borate nanoparticles, polyvinyl pyrrolidone has been used as a capping agent and the preparation method was performed via simple co-precipitation technique followed by heating treatment. In absence of polymer, the heating process causes un-controlled growth of particles with more flocculation and the nanoplate-shaped particles with mean size of 16.0 ×30.0 nm was formed. The introduction of polymer concentration of 1 wt% was conducted to the formation of spherical shaped nanoparticles with sufficiently narrow size distribution and small average size of 5.5 nm and 13.0 nm for the initial precipitation and heating process, respectively. Moreover, the synthesized calcium borate nanoparticles showed good luminescence properties with a simple glow curve dominating at 150°C.

Results: This curve was utilized to derive trapping parameters including the activation energy, order of kinetic and frequency factor.

Conclusion: The well-dispersed calcium borate nanoparticles have been prepared successfully by introduction of sufficient concentration of polymer.

Keywords: Calcium borate, nanoparticles, luminescence, polyvinyl pyrrolidone, polymer, co-precipitation.

Graphical Abstract
[1]
Sharma, R.; Chandra, B.P.; Bisen, D.P. Thermoluminescence and optical absorption spectra of ZnS:Mn nanoparticles. Chalcogenide Lett., 2009, 6(6), 251-255.
[2]
Wang, H.; Qiao, X.; Chen, J.; Wang, X.; Ding, S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys., 2005, 94, 449-453.
[3]
Sharma, R.; Bisen, D.P.; Dhoble, S.J.; Brahme, N.; Chandra, B.P. Mechanoluminescence and thermoluminescence of Mn doped ZnS nanocrystals. J. Lumin., 2011, 131, 2089-2092.
[4]
Ghosh, G.; Naskar, M.K.; Patra, A.; Chatterjee, M. Synthesis and characterization of PVP-encapsulated ZnS nanoparticles. Opt. Mater., 2006, 28, 1047-1053.
[5]
Soltani, N.; Saion, E.; Hussein, M.Z.; Erfani, M.; Rezaee, K.; Bahmanrokh, G. Phase controlled monodispersed CdS nanocrystals synthesized in polymer solution using microwave irradiation. J. Inorg. Organomet. Polym., 2012, 22, 830-836.
[6]
Kang, S.Z.; Yang, Y.; Xu, Z.; Mu, J. Effect of the spherical silica surface on the photoluminescence of the loaded cds nanoparticles. J. Dispers. Sci. Technol., 2008, 29(4), 521-524.
[7]
Liu, X.; Guo, M.; Zhang, M.; Wang, X.; Guo, X.; Chou, K. Effects of PVP on the preparation and growth mechanism of monodispersed Ni nanoparticles. Rare Met., 2008, 27(6), 642-647.
[8]
Loria Bastarrachea, M.I.; Herrera-Kao, W.; Cauich-Rodríguez, J.V.J.; Cervantes-U, M.; Vázquez-Torres, H. Ávila-Ortega, A. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J. Therm. Anal. Calorim., 2010, 104(2), 737-742.
[9]
Purcar, V.; Somoghi, R.; Nistor, C.L.; Petcu, C.; Cinteza, L.O. Facile preparation of impurity doped CdS nanoparticles in new polymeric templates. Mol. Cryst. Liquid Cryst., 2008, 483(1), 244-257.
[10]
Tomczak, N.; Jańczewski, D.; Han, M.; Vancso, G.J. Designer polymer–quantum dot architectures. Prog. Polym. Sci., 2009, 34(5), 393-430.
[11]
Lochab, S.P.; Pandey, A.; Sahare, P.D.; Chauhan, R.S.; Salah, N.; Ranjan, R. Nanocrystalline MgB4O7:Dy for high dose measurement of gamma radiation. Phys. Status Solidi, 2007, 204, 2416-2425. [a].
[12]
Sahare, P.D.; Ranju, R.; Salah, N.; Lochab, S.P. K3Na(SO4)2:Eu nanoparticles for high dose of ionizing radiation. J. Phys. D, 2007, 40, 759-764.
[13]
Salah, N.; Habib, S.S.; Khan, Z.H.; Al-Hamedi, S.; Lochab, S.P. Nanoparticles of BaSO4:Eu for heavy-dose measurements. J. Lumin., 2009, 129(3), 192-196.
[14]
Salah, N.; Khan, Z.H.; Habib, S.S. Nanoparticles of Al2O3:Cr as a sensitive thermoluminescent material for high exposures of gamma rays irradiations. Nucl. Instrum. Methods Phys. Res. B, 2011, 269, 401-404.
[15]
Singh, L.; Chopra, V.; Lochab, S.P. Synthesis and characterization of thermoluminescent Li2B4O7 nanophosphor. J. Lumin., 2011, 131, 1177-1183.
[16]
Manam, J.; Sharma, S.K. Thermally stimulated luminescence studies of undoped and doped CaB4O7 compounds. Semicond. Phys. Quant. Electron. Optoelectron., 2003, 6(4), 465-470.
[17]
Fukuda, Y.; Tomita, A.; Takeuchi, N. Hermoluminescence and Thermally Stimulated Exoelectron Emission in Glass and Sintered CaB4O7:CuCl2. Phys. Status Solidi (a), 1984, 85(2), k141-k144.
[18]
Furetta, C.; Prokic, M.; Salamon, R.; Prokic, V.; Kitis, G. Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate. Nuclear Instr. Methods Phys. Res. Sec. A, 2001, 456(3), 411-417.
[19]
Navasery, M.; Halim, S.A.; Lim, K.P.; Chen, S.K.; Roslan, A.S.; Abd-Shukor, R. Structure, electrical transport and magneto-resistance properties of La 5/8 Ca 3/8 MnO 3 manganite synthesized with different manganese precursors. Mod. Phys. Lett. B, 2012, 26(06)1150039
[20]
Soltani, N.; Saion, E.; Erfani, M.; Rezaee, K.; Bahmanrokh, G.; Drummen, G.P.C.; Bahrami, A.; Hussein, M.Z. Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles synthesized by microwave irradiation. Int. J. Mol. Sci., 2012, 13, 12412-12427.
[21]
Anand, G.T.; Kennedy, L.J.; Vijaya, J.J. Microwave combustion synthesis, structural, optical and magnetic properties of Zn1−xCoxAl2O4 (0⩽x⩽0.5) spinel nanostructures. J. Alloys Compd., 2013, 581(Suppl. C), 558-566.
[22]
Maurya, A.; Chauhan, P.; Mishra, S.K.; Srivastava, R.K. Structural, optical and charge transport study of rutile TiO2 nanocrystals at two calcination temperatures. J. Alloys Compd., 2011, 509(33), 8433-8440.
[23]
Naseri, M.G.; Saion, E.B.; Ahangar, H.A.; Hashim, M.; Shaari, A.H. Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol., 2011, 212(1), 80-88.
[24]
Borodko, Y.; Lee, H.S.; Joo, S.H.; Zhang, Y.; Somorjai, G. Spectroscopic Study of the Thermal Degradation of PVP-capped Rh and Pt Nanoparticles in H2 and O2 environments. J. Phys. Chem. C, 2009, 114(2), 1117-1126.
[25]
Koebel, M.M.; Jones, L.C.; Somorjai, G.A. Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth. J. Nanopart. Res., 2008, 10(6), 1063-1069.
[26]
Du, Y.K.; Yang, P.; Mou, Z.G.; Hua, N.P.; Jiang, L. Thermal decomposition behaviors of PVP Coated on platinum nanoparticles. J. Appl. Polym. Sci., 2004, 99(1), 23-26.
[27]
Naseri, M.G.; Saion, E.; Abbastabar Ahangar, H.; Shaari, A.H.; Hashim, M. Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater., 2010, 2010, 75.
[28]
Tu, W.X.; Zuo, X.b.; Liu, H.F. Study on the interaction between Polyvinylpyrrolidone and platinum metals during the formation of the colloidal metal nanoparticles. Chin. J. Polym. Sci., 2008, 26(1), 23-29.
[29]
Depci, T.; Ozbayoglu, G.; Yilmaz, A. Comparison of different synthesis methods to produce lithium triborate and their effects on its thermoluminescent property. Metallurg. Mater. Trans. A, 2010, 41(10), 2584-2594.
[30]
Pekpak, E.; Yilmaz, A.; Ozbayoglu, G. The effect of synthesis and doping procedures on thermoluminescenct response of lithium tetraborate. J. Alloys Compd., 2010, 509(5), 2466-2472.
[31]
Lochab, S.; Sahare, P.; Chauhan, R.S.; Salah, N.; Pandey, A. Thermoluminescence and photoluminescence study of nanocrystalline Ba0. 97Ca0. 03SO4: Eu. J. Phys. D Appl. Phys., 2007, 40(5), 1343.
[32]
Chen, R. Glow curves with general order kinetics. J. Electrochem. Soc., 1969, 116(9), 1254-1257.
[33]
Salah, N.; Sahare, P.D.; Rupasov, A.A. Thermoluminescence of nanocrystalline LiF:Mg, Cu, P. J. Lumin., 2007, 124, 357-364.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy