Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Optimum HPLC Conditions for Determination of Dibucaine HCL, Fluocortolone Pivalate and Fluocortolone Caproate by Using Experimental Design

Author(s): Bürge Aşçı* and Mesut Koç

Volume 15, Issue 1, 2019

Page: [32 - 38] Pages: 7

DOI: 10.2174/1573412913666170707113025

Price: $65

Abstract

Introduction: This paper presents the development and validation of a novel, fast, sensitive and accurate high performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical preparations.

Experiment: Development of the chromatographic method was based on an experimental design approach. A five-level-three-factor central composite design requiring 20 experiments in this optimization study was performed in order to evaluate the effects of three independent variances including mobile phase ratio, flow rate and amount of acid in the mobile phase.

Conclusion: The optimum composition for mobile phase was found as a methanol:water:acetic acid mixture at 71.6 : 26.4 : 2 (v/v/v) ratio and optimum separation was acquired by isocratic elution with a flow rate of 1.3 mL/min. The analytes were detected using a UV detector at 240 nm. The developed method was validated in terms of linearity, precision, accuracy, limit of detection/quantitation and solution stability and successfully applied to the determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical topical formulations such as suppositories and ointments.

Keywords: Experimental design, dibucaine HCl, fluocortolone pivalate, fluocortolone caproate, HPLC, validation.

Graphical Abstract
[1]
Lotfy, H.M.; Tawakkol, S.M.; Fahmy, N.M.; Shehata, M.A. A comparative study of novel spectrophotometric resolution techniques applied for pharmaceutical mixtures with partially or severely overlapped spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136, 937-952.
[2]
Elsayed, M.M.A. Rapid determination of cinchocaine in skin by high-performance liquid chromatography. Biomed. Chromatogr., 2007, 21(5), 491-496.
[3]
Cudina, O.; Brboric, J.; Vujic, Z.; Radulovic, S.; Vladimirov, S. Determination of fluocortolone pivalate and fluocortolone hexanoate in suppositories using reverse-phase HPLC. Farmaco, 2000, 55(2), 125-127.
[4]
Soto, C.; Contreras, D.; Toral, M.I.; Basaez, L.; Freer, J. Simultaneous determination of dibucaine and chlorphenamine maleate using different mathematical spectrophotometic approaches. J. Chil. Chem. Soc., 2009, 54(2), 113-118.
[5]
Abdel-Ghani, N.T.; Youssef, A.F.; Awady, M.A. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry. Farmaco, 2005, 60, 419-424.
[6]
Mohammad, A.A.; Zawilla, N.; El-Anwar, F.M.; El-Moghazy Aly, S.M. Spectrophotometric methods for the determination of acediasulfone in mixture with cinchocaine. Anal. Lett., 2007, 40(5), 987-1001.
[7]
El-Gindy, A.; Korany, M.A.; Bedair, M.F. First derivative spectrophotometric and high-performance liquid chromatographic determination of cinchocaine hydrochloride in presence of its acid degradation product. J. Pharm. Biomed. Anal., 1998, 17(8), 1357-1370.
[8]
Satinsky, D.; Chocholous, P.; Valova, O.; Hanusova, L.; Solich, P. Two-column seguential injection chromatography for fast isocratic separation of two analttes of greatly differing chemical properties. Talanta, 2013, 114, 311-317.
[9]
Mohammad, A.A.; Zawilla, N.; El-Anwar, F.M.; El-Moghazy Aly, S.M. Column and thin-layer chromatographic methods for the simultaneous determination of acediasulfone in the presence of cinchocaine and cefuroxime in the prence of its hydrolytic degration products. J. AOAC Int., 2007, 90(2), 403-415.
[10]
Saito, T.; Morita, S.; Kishiyama, I.; Miyazaki, S.; Nakomoto, A.; Nishida, M.; Namera, A.; Nagao, M.; Inokuchi, S. Simultaneous determination of dibucaine and naphazoline in human serum by monolithic silica spin column extraction and liquid chromatography-mass spectrometry. J. Chromatogr. B., 2008, 872(1-2), 186-190.
[11]
Barbosa, R.M.; Klassen, A.; Marcato, P.D.; Franz-Montan, M.; Grillo, R.; Fraceto, L.F.; Paula, E. Validation of an HPLC method for the determination of dibucaine encapsulated in solid lipid nanoparticles and nanostructured lipid carriers. Lat. Am. J. Pharm., 2013, 32(9), 1362-1368.
[12]
Ensafi, A.A.; Allafchian, A.R. Potentiometric sensor for the determination of dibucaine in pharmaceutical preparations and electrochemical study of the drug with BSA. Bull. Kore Chem. Soc., 2011, 32(8), 2722-2726.
[13]
Komorsky-Lovric, S.; Vukasinovic, N.; Penovski, R. Voltammetric determination of microparticles of some local anesthetics and antithusics immobilized on the graphite electrode. Electroanal, 2003, 15(5-6), 544-547.
[14]
Essig, S.; Kovar, K.A. Fluorimetric determination of cinchocaine in a pharmaceutical drug by scanning and video densitometry. Chromatography., 2001, 53(5-6), 321-322.
[15]
Cudina, O.; Vladimirov, S.; Zivanov-Stakiç, D.; Agbaba, D. Spectrophotometric determination of fluocortolone in tablets using 1, 4-dihydrazinophthalazine. J. Serb. Chem. Soc., 2000, 65(9), 645-648.
[16]
Amin, M. Simultaneous determination of fluocortolone, fluocortolone caproate and nicotinic acid benzylester in pharmaceutical preparations by TLC. Fresens. Zeitsch. Anal. Chem., 1987, 328(1-2), 114-116.
[17]
Hibbert, D.B. Experimental design in chromatography; a tutorial review. J. Chromatogr. B., 2012, 910, 2-13.
[18]
Dinç, Ş.; Dönmez, Ö.A.; Aşçı, B.; Bozdoğan, A.E. Chromatographic and chemometrics-assisted spectrophotometric methods for the simultaneous determination of allobarbital, adiphenine hydrochloride, and paracetamol in suppository. J. Liq. Chromatogr. Relat. Technol., 2014, 37, 560-571.
[19]
Dragomiroiu, G.T.A.B.; Cimpoiesu, A.; Ginghina, O.; Baloescu, C.; Barca, M. Popa, D.A., Ciobanu, A.M.; Anuta, V. The development and validation of rapid HPLC method for determination of piroxicam. Farmacia, 2015, 63(1), 123-131.
[20]
Dinç-Zor, Ş.; Aşçı, B.; Dönmez, Ö.A.; Küçükkaraca, D.Y. Simultaneous determination of potassium sorbate, sodium benzoate, quinoline yellow and sunset yellow in lemonades and lemon sauces by HPLC using experimental design. J. Chromatogr. Sci., 2016, 54(6), 952-957.
[21]
Song, J.Z.; Qiao, C.F.; Li, S.L.; Zhou, Y.; Hsieh, M.T.; Xu, H.X. Rapid optimization of dual-mode gradient high performance liquid chromatographic separation of Radix et Rhizoma Salviae Miltiorrhizae by response surface methodology. J. Chrom. A, 2009, 1216, 7007-7012.
[22]
International Conference on Harmonization (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use, Topic Q2 (R1): Validation of Analytical Procedures: Text and Methodology, International Conference on Harmonization (ICH), Geneva, Switzerland, 2005.
[23]
Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nystrom, A.; Pettersen, J.; Bergman, R. Experimental design and optimization. Chemom. Intell. Lab. Syst., 1998, 42, 3-40.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy