Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

General Research Article

Green Synthesis and Spectroscopic Studies of Ag-rGO Nanocomposites for Highly Selective Mercury (II) Sensing

Author(s): Shubhangi J. Mane-Gavade, Sandip R. Sabale*, Xiao-Ying Yu, Gurunath H. Nikam and Bhaskar V. Tamhankar*

Volume 9, Issue 1, 2019

Page: [101 - 108] Pages: 8

DOI: 10.2174/2210681207666170705143629

Price: $65

Abstract

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time.

Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998.

Results & Conclusion: The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.

Keywords: Green synthesis, Ag-rGO Nanocomposites, Acacia nilotica gum, Hg2+ sensing, Limit of Detection (LOD).

Graphical Abstract
[1]
Clarkson, T.W.; Magos, L.; Myers, G.J. The toxicology of mercury-current exposures and clinical manifestations. N. Engl. J. Med., 2003, 349, 1731-1737.
[2]
Stern, A.H. A review of the studies of the cardiovascular health effects of methyl mercury with consideration of their suitability for risk assessment. Environ. Res., 2005, 98, 133-142.
[3]
Zhang, Y.; Zeng, G.; Tang, L.; Chen, J.; Zhu, Y.; He, X.; He, Y. Electrochemical sensor based on electrodeposited graphene – Au modified electrode and nano Au carrier amplified signal strategy for attomolar mercury. Anal. Methods, 2015, 87(2), 1-25.
[4]
Vupputuri, S.; Longnecker, M.P.; Daniels, J.L.; Guo, X.; Sandler, D.P. Blood mercury level and blood pressure among US women: Results from the national health and nutrition examination survey 1999-2000. Environ. Res., 2005, 97, 195-200.
[5]
Chen, K.; Lu, G.; Chang, J.; Mao, S.; Yu, K.; Cui, S.; Chen, J. Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal. Chem., 2012, 84, 4057-4062.
[6]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Inter Sci., 2009, 145, 83-96.
[7]
Kumar, S.; Selvaraj, C.; Scanlon, L.G.; Munichandraiah, N. Ag nanoparticles–anchored reduced grapheneoxide catalyst for oxygen electrode reaction in aqueous electrolytes and also a non-aqueous electrolyte for Li–O2 cells. Phys. Chem. Chem. Phys., 2014, 16, 22830-22840.
[8]
Sistani, P.; Sofimaryo, L.; Masoudi, Z.R.; Sayad, A.; Rahimzadeh, R. A penicillin biosensor by using silver nanoparticles. Int. J. Electrochem. Sci., 2014, 9, 6201-6212.
[9]
Rastogi, P.K.; Ganesan, V.; Krishnamoorthi, S. A promising electrochemical sensing platform based on a silver nanoparticle decorated copolymer for sensitive nitrite determination. J. Mater. Chem. A., 2014, 2, 933-943.
[10]
Zaid, R.M.; Chong, F.C.; Lih Teo, E.Y.; Ng, E.P.; Chong, K.F. Reduction of graphene oxide nanosheets by natural beta carotene and its potential use as supercapacitor electrode. Arabian . J. Chem., 2015, 8, 560-569.
[11]
Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81, 109-162.
[12]
Padalia, H.; Moteriya, P.; Chanda, S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arabian . J. Chem., 2015, 8, 732-741.
[13]
Tan, C.; Huang, X.; Zhang, H. Synthesis and applications of graphene-based noble metal nanostructures. Mater. Today, 2013, 16, 29-36.
[14]
Muthoosamy, K.; Geetha Bai, R.; Manickam, S. Graphene and graphene oxide as a docking station for modern drug delivery system. Curr. Drug Deliv., 2014, 11, 701-718.
[15]
Wang, S.; Tambraparni, M.; Qiu, J.; Tipton, J.; Dean, D. Thermal expansion of graphene composites. Macromolecules, 2009, 42, 5251-5255.
[16]
Lightcap, I.V.; Kosel, T.H.; Kamat, P.V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat storing and shuttling electrons with reduced graphene oxide. Nano Lett., 2010, 10, 577-583.
[17]
Al-Marri, A.H.; Khan, M.; Shaik, M.R.; Mohri, N.; Adil, S.F.; Kuniyil, M.; Alkhathlan, H.Z.; AlWarthan, A.; Tremel, W.; Tahir, M.N.; Khan, M.; Siddiqui, M.H. Green synthesis of Pd-graphene Nanocomposites:Catalyst for the selective oxidation of alcohols. Arabian . J. Chem., 2016, 9, 835-845.
[18]
Raja, S.; Ramesh, V.; Thivaharan, V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, theirantibacterial activity and hydrogen peroxide sensing capability. Arabian . J. Chem., 2017, 10, 253-261.
[19]
Si, Y.; Samulski, E.T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater., 2008, 20, 6792-6797.
[20]
Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.S.; Chen, G. Silver nanoparticles: Synthesis, properties and therapeutic applications. Drug Discov. Today, 2015, 20, 595-601.
[21]
Hareesh, K.; Joshi, R.P.; Dahiwale, S.S.; Bhoraskar, V.N.; Dhole, S.D. Synthesis of Ag-reduced graphene oxide Nanocomposites by gamma radiation assisted method and its photocatalytic activity. Vacuum, 2016, 124, 40-45.
[22]
Bhunia, S.K.; Jana, N.R. Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Appl. Mater. Interfaces, 2014, 6, 20085-20092.
[23]
Li, Y.; Chen, C.; Li, B.; Sun, J.; Wang, J.; Gao, Y.; Zhao, Y.; Chai, Z. Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J. Anal. At. Spectrom., 2006, 21, 94-96.
[24]
Wisdom, G.O.S.; Shittu, G.A. In vitro antimicrobial and phytochemical activities of Acacia nilotica leaf extract. J. Med. Plants Res., 2010, 4, 1232-1234.
[25]
Mane Gavade, S.J.; Nikam, G.H.; Sabale, S.R.; Tamhankar, B.V. Green synthesis of fluorescent silver nanoparticles using Acacia nilotica gum extract for kinetic studies of 4-nitrophenol reduction. Mat. Today Proc., 2016, 3(10B), 4109-4114.
[26]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. ACS,, 1958, 80, 1339-1339.
[27]
Kamble, R.; Sabale, S.; Chikode, P.; Puri, V.; Yu, X-Y.; Mahajan, S. Structural characterization and photocatalytic properties of hydrothermally synthesized Ni2+-TiO2 nanoparticles for dye degradation under direct sunlight. Indian J. Chem., 2017, 56A, 479-487.
[28]
Pham, V.H.; Cuong, T.V.; Hur, S.H.; Oh, E.; Kim, E.J.; Shin, E.W.; Chung, J.S. Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J. Mater. Chem., 2011, 21, 3371-3377.
[29]
Liao, K.H.; Mittal, A.; Bose, S.; Leighton, C.; Mkhoyan, K.A.; MacOsko, C.W. Aqueous only route toward graphene from graphite oxide. ACS Nano, 2011, 5, 1253-1258.
[30]
Bandgar, A.; Sabale, S.; Pawar, S.H. Studies on influence of reflux time on synthesis of nanocrystalline TiO2 prepared by peroxotitanate complex solutions. Ceramics. Int., 2012, 38(3), 1905-1913.
[31]
Mane Gavade, S.J.; Nikam, G.H.; Dhabbe, R.S.; Sabale, S.R.; Mulik, G.N.; Tamhankar, B.V. Green synthesis of silver nanoparticle by using carambola fruit extract and their antibacterial activity. Adv. Nat. Sci. Nanosci. Nanotechnol, 2015, 6, 1-6.
[32]
Annadhasan, M.; Muthukumarasamyvel, T.; Sankar Babu, V.R.; Rajendiran, N. Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+ and Mn2+ in aqueous medium. ACS Sustain. Chem. Eng., 2014, 2(4), 887-896.
[33]
Walekar, L.S.; Gore, A.H.; Anbhule, P.V.; Sudarsan, V.; Patil, S.R.; Kolekar, G.B. A novel colorimetric probe for highly selective recognition of Hg2+ ions in aqueous media based on inducing the aggregation of CPB-capped AgNPs: Accelerating direct detection for environmental analysis. Anal. Methods, 2013, 5, 5501-5507.
[34]
Noor, A.M.; Rameshkumar, P.; Huang, N.M.; Wei, L.S. Visual and spectrophotometric determination of mercury (II) using silver nanoparticles modified with graphene oxide. Microchim. Acta, 2016, 183(2), 597-603.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy