Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Cu2+ Biological Imaging Probes Based on Different Sensing Mechanisms

Author(s): Caixia Yin*, Jiawei Li and Fangjun Huo

Volume 26, Issue 21, 2019

Page: [3958 - 4002] Pages: 45

DOI: 10.2174/0929867324666170428110724

Price: $65

Abstract

In recent years, fluorescent probes have recently attracted attention from researchers. As a vital trace metal element, Cu2+ has an important role in the human body and environment. Therefore, the development and design of Cu2+ small-molecular fluorescent probes has been an active research area. This review focuses on the developments in the area of small-molecular fluorescent probes for Cu2+ in biological applications according to different sensing mechanisms including charge transfer (CT), electron transfer, energy transfer, excited-state intramolecular proton transfer (ESIPT).

Keywords: Detection, Metal ions, Cu2+ small-molecular fluorescent probes, Biological applications, Sensing mechanisms, charge transfer (CT).

[1]
Ballesteros, E.; Moreno, D.; Gómez, T.; Rodríguez, T.; Rojo, J.; García-Valverde, M.; Torroba, T. A new selective chromogenic and turn-on fluorogenic probe for copper(II) in water-acetonitrile 1:1 solution. Org. Lett., 2009, 11(6), 1269-1272.
[http://dx.doi.org/10.1021/ol900050z] [PMID: 19220060]
[2]
Goswami, S.; Chakrabarty, R. Fluorescence sensing of Cu2+ within a pseudo 18-crown-6 cavity. Tetrahedron Lett., 2009, 50, 5910-5913.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.011]
[3]
Wang, C.; Lu, L.; Ye, W.; Zheng, O.; Qiu, B.; Lin, Z.; Guo, L.; Chen, G. Fluorescence sensor for Cu(II) in the serum sample based on click chemistry. Analyst (Lond.), 2014, 139(3), 656-659.
[http://dx.doi.org/10.1039/C3AN01262J] [PMID: 24350327]
[4]
Camakaris, J.; Voskoboinik, I.; Mercer, J.F. Molecular mechanisms of copper homeostasis. Biochem. Biophys. Res. Commun., 1999, 261(2), 225-232.
[http://dx.doi.org/10.1006/bbrc.1999.1073] [PMID: 10425169]
[5]
Koval, I.A.; Gamez, P.; Belle, C.; Selmeczi, K.; Reedijk, J. Synthetic models of the active site of catechol oxidase: Mechanistic studies. Chem. Soc. Rev., 2006, 35(9), 814-840.
[http://dx.doi.org/10.1039/b516250p] [PMID: 16936929]
[6]
Valentine, J.S.; Hart, P.J. Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3617-3622.
[http://dx.doi.org/10.1073/pnas.0730423100] [PMID: 12655070]
[7]
Linder, M.C.; Hazegh-Azam, M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 1996, 63(5), 797S-811S.
[PMID: 8615367]
[8]
Reddy, P.V.B.; Rao, K.V.R.; Norenberg, M.D. The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes. Lab. Invest., 2008, 88(8), 816-830.
[http://dx.doi.org/10.1038/labinvest.2008.49] [PMID: 18591939]
[9]
Feng, H.T.; Song, S.; Chen, Y.C.; Shen, C.H.; Zheng, Y.S. Self-assembled tetraphenylethylene macrocycle nanofibrous materials for the visual detection of copper(II) in water. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2, 2353-2359.
[http://dx.doi.org/10.1039/C3TC32373K]
[10]
Bonham, M.; O’Connor, J.M.; Hannigan, B.M.; Strain, J.J. The immune system as a physiological indicator of marginal copper status? Br. J. Nutr., 2002, 87(5), 393-403.
[http://dx.doi.org/10.1079/BJN2002558] [PMID: 12010579]
[11]
Li, D.; Zhou, W.; Chai, Y.; Yuan, R.; Xiang, Y. Click chemistry-mediated catalytic hairpin self-assembly for amplified and sensitive fluorescence detection of Cu(2+) in human serum. Chem. Commun. (Camb.), 2015, 51(63), 12637-12640.
[http://dx.doi.org/10.1039/C5CC04218F] [PMID: 26160681]
[12]
Shiraishi, Y.; Tanaka, K.; Hirai, T. Colorimetric sensing of Cu(II) in aqueous media with a spiropyran derivative via a oxidative dehydrogenation mechanism. ACS Appl. Mater. Interfaces, 2013, 5(8), 3456-3463.
[http://dx.doi.org/10.1021/am4005804] [PMID: 23510458]
[13]
Ge, C.; Luo, Q.; Wang, D.; Zhao, S.; Liang, X.; Yu, L.; Xing, X.; Zeng, L. Colorimetric detection of copper(II) ion using click chemistry and hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme. Anal. Chem., 2014, 86(13), 6387-6392.
[http://dx.doi.org/10.1021/ac501739a] [PMID: 24950121]
[14]
Li, K.; Li, N.; Chen, X.; Tong, A. A ratiometric fluorescent chemodosimeter for Cu(II) in water with high selectivity and sensitivity. Anal. Chim. Acta, 2012, 712, 115-119.
[http://dx.doi.org/10.1016/j.aca.2011.10.066] [PMID: 22177073]
[15]
Fu, Y.; Ding, C.; Zhu, A.; Deng, Z.; Tian, Y.; Jin, M. Two-photon ratiometric fluorescent sensor based on specific biomolecular recognition for selective and sensitive detection of copper ions in live cells. Anal. Chem., 2013, 85(24), 11936-11943.
[http://dx.doi.org/10.1021/ac403527c] [PMID: 24256150]
[16]
Sfrazzetto, G.T.; Satriano, C.; Tomaselli, G.A.; Rizzarelli, E. Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord. Chem. Rev., 2016, 311, 125-167.
[http://dx.doi.org/10.1016/j.ccr.2015.11.012]
[17]
Choi, Y.W.; Lee, J.J.; You, G.R.; Lee, S.Y.; Kim, C. Chromogenic naked-eye detection of copper ion and fluoride. RSC Advances, 2015, 5, 86463-86472.
[http://dx.doi.org/10.1039/C5RA16301C]
[18]
Nies, D.H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol., 1999, 51(6), 730-750.
[http://dx.doi.org/10.1007/s002530051457] [PMID: 10422221]
[19]
Yao, Z.; Yang, Y.; Chen, X.; Hu, X.; Zhang, L.; Liu, L.; Zhao, Y.; Wu, H.C. Visual detection of copper(II) ions based on an anionic polythiophene derivative using click chemistry. Anal. Chem., 2013, 85(12), 5650-5653.
[http://dx.doi.org/10.1021/ac401386v] [PMID: 23742674]
[20]
Flemming, C.A.; Trevors, J.T. Copper toxicity and chemistry in the environment. A review: Water Air Soil Pollut., 1989, 44, 143-158.
[http://dx.doi.org/10.1007/BF00228784]
[21]
Ajlec, R.; Štupar, J. Determination of iron species in wine by ion-exchange chromatography--flame atomic absorption spectrometry. Analyst (Lond.), 1989, 114(2), 137-142.
[http://dx.doi.org/10.1039/AN9891400137] [PMID: 2712313]
[22]
Gunnlaugsson, T.; Leonard, J.P.; Murray, N.S. Highly selective colorimetric naked-eye Cu(II) detection using an azobenzene chemosensor. Org. Lett., 2004, 6(10), 1557-1560.
[http://dx.doi.org/10.1021/ol0498951] [PMID: 15128235]
[23]
Wu, Z.; Liu, J.; Gao, Y.; Liu, H.; Li, T.; Zou, H.; Wang, Z.; Zhang, K.; Wang, Y.; Zhang, H.; Yang, B. Assembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic property. J. Am. Chem. Soc., 2015, 137(40), 12906-12913.
[http://dx.doi.org/10.1021/jacs.5b06550] [PMID: 26397821]
[24]
Jin, L.H.; Han, C.S. Ultrasensitive and selective fluorimetric detection of copper ions using thiosulfate-involved quantum dots. Anal. Chem., 2014, 86(15), 7209-7213.
[http://dx.doi.org/10.1021/ac501515f] [PMID: 24981053]
[25]
Zhu, A.; Ding, C.; Tian, Y. A two-photon ratiometric fluorescence probe for cupric ions in live cells and tissues. Sci. Rep., 2013, 3, 2933.
[http://dx.doi.org/10.1038/srep02933] [PMID: 24121717]
[26]
Ding, Y.; Tang, Y.; Zhu, W.; Xie, Y. Fluorescent and colorimetric ion probes based on conjugated oligopyrroles. Chem. Soc. Rev., 2015, 44(5), 1101-1112.
[http://dx.doi.org/10.1039/C4CS00436A] [PMID: 25608833]
[27]
Chen, B.; Ding, Y.; Li, X.; Zhu, W.; Hill, J.P.; Ariga, K.; Xie, Y. Steric hindrance-enforced distortion as a general strategy for the design of fluorescence “turn-on” cyanide probes. Chem. Commun. (Camb.), 2013, 49(86), 10136-10138.
[http://dx.doi.org/10.1039/c3cc46008h] [PMID: 24048509]
[28]
Ding, Y.; Li, X.; Li, T.; Zhu, W.; Xie, Y. α-Monoacylated and α,α′- and α,β′-diacylated dipyrrins as highly sensitive fluorescence “turn-on” Zn2+ probes. J. Org. Chem., 2013, 78(11), 5328-5338.
[http://dx.doi.org/10.1021/jo400454e] [PMID: 23668855]
[29]
Dujols, V.; Ford, F.; Czarnik, A.W. A Long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc., 1997, 119, 7386-7387.
[http://dx.doi.org/10.1021/ja971221g]
[30]
Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev., 2008, 108(5), 1517-1549.
[http://dx.doi.org/10.1021/cr078203u] [PMID: 18426241]
[31]
Royzen, M.; Dai, Z.; Canary, J.W. Ratiometric displacement approach to Cu(II) sensing by fluorescence. J. Am. Chem. Soc., 2005, 127(6), 1612-1613.
[http://dx.doi.org/10.1021/ja0431051] [PMID: 15700975]
[32]
Li, H.; Zhang, P.; Smaga, L.P.; Hoffman, R.A.; Chan, J. Photoacoustic probes for ratiometric imaging of copper(II). J. Am. Chem. Soc., 2015, 137(50), 15628-15631.
[http://dx.doi.org/10.1021/jacs.5b10504] [PMID: 26652006]
[33]
Du, J.; Hu, M.; Fan, J.; Peng, X. Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media. Chem. Soc. Rev., 2012, 41(12), 4511-4535.
[http://dx.doi.org/10.1039/c2cs00004k] [PMID: 22535221]
[34]
Guo, Z.; Park, S.; Yoon, J.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev., 2014, 43(1), 16-29.
[http://dx.doi.org/10.1039/C3CS60271K] [PMID: 24052190]
[35]
Basa, P.N.; Sykes, A.G. Differential sensing of Zn(II) and Cu(II) via two independent mechanisms. J. Org. Chem., 2012, 77(19), 8428-8434.
[http://dx.doi.org/10.1021/jo301193n] [PMID: 22924706]
[36]
Chen, X.; Pradhan, T.; Wang, F.; Kim, J.S.; Yoon, J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev., 2012, 112(3), 1910-1956.
[http://dx.doi.org/10.1021/cr200201z] [PMID: 22040233]
[37]
Pandey, R.; Kumar, P.; Singh, A.K.; Shahid, M.; Li, P.Z.; Singh, S.K.; Xu, Q.; Misra, A.; Pandey, D.S. Fluorescent zinc(II) complex exhibiting “on-off-on” switching toward Cu2+ and Ag+ ions. Inorg. Chem., 2011, 50(8), 3189-3197.
[http://dx.doi.org/10.1021/ic1018086] [PMID: 21395262]
[38]
Hrishikesan, E.; Saravanan, C.; Kannan, P. Bis-triazole-appended azobenzene chromophore for selective sensing of copper(II). Ion. Ind. Eng. Chem. Res., 2011, 50, 8225-8229.
[http://dx.doi.org/10.1021/ie200548j]
[39]
Chaudhry, A.F.; Verma, M.; Morgan, M.T.; Henary, M.M.; Siegel, N.; Hales, J.M.; Perry, J.W.; Fahrni, C.J. Kinetically controlled photoinduced electron transfer switching in Cu(I)-responsive fluorescent probes. J. Am. Chem. Soc., 2010, 132(2), 737-747.
[http://dx.doi.org/10.1021/ja908326z] [PMID: 20020716]
[40]
Xie, J.; Ménand, M.; Maisonneuve, S.; Métivier, R. Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II). J. Org. Chem., 2007, 72(16), 5980-5985.
[http://dx.doi.org/10.1021/jo070315y] [PMID: 17628104]
[41]
Yang, P.; Zhao, Y.; Lu, Y.; Xu, Q.Z.; Xu, X.W.; Dong, L.; Yu, S.H. Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: A fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano, 2011, 5(3), 2147-2154.
[http://dx.doi.org/10.1021/nn103352b] [PMID: 21344860]
[42]
Lee, A.; Chin, J.; Park, O.K.; Chung, H.; Kim, J.W.; Yoon, S.Y.; Park, K. A novel near-infrared fluorescence chemosensor for copper ion detection using click ligation and energy transfer. Chem. Commun. (Camb.), 2013, 49(53), 5969-5971.
[http://dx.doi.org/10.1039/c3cc42059k] [PMID: 23715477]
[43]
Sinha, S.; Chowdhury, B.; Ghosh, P. A Highly sensitive ESIPT-based ratiometric fluorescence sensor for selective detection of Al(3.). Inorg. Chem., 2016, 55(18), 9212-9220.
[http://dx.doi.org/10.1021/acs.inorgchem.6b01170] [PMID: 27571218]
[44]
Budzák, Š.; Jacquemin, D. Mechanism of fluorescence switching in one ESIPT-based Al(3+) probe. J. Phys. Chem. B, 2016, 120(27), 6730-6738.
[http://dx.doi.org/10.1021/acs.jpcb.6b04474] [PMID: 27281545]
[45]
Wang, H.X.; Yang, L.; Zhang, W.B.; Zhou, Y.; Zhao, B.; Li, X.Y. A colorimetric probe for copper(II) ion based on 4-amino-1,8-naphthalimide. Inorg. Chim. Acta, 2012, 381, 111-116.
[http://dx.doi.org/10.1016/j.ica.2011.07.039]
[46]
Kumari, N.; Dey, N.; Jha, S.; Bhattacharya, S. Ratiometric, reversible, and parts per billion level detection of multiple toxic transition metal ions using a single probe in micellar media. ACS Appl. Mater. Interfaces, 2013, 5(7), 2438-2445.
[http://dx.doi.org/10.1021/am400063k] [PMID: 23427918]
[47]
Zhao, H.; Wang, Y.T.; Liu, Z.Y.; Dai, B. Specific Cu(II) detection using a novel tricarbazolyltristriazolotriazine based on photoinduced charge transfer. RSC Advances, 2014, 4, 13161-13166.
[http://dx.doi.org/10.1039/C3RA46239K]
[48]
You, G.R.; Lee, J.J.; Choi, Y.W.; Lee, S.Y.; Kim, C. Experimental and theoretical studies for sequential detection of copper(II) and cysteine by a colorimetric chemosensor. Tetrahedron, 2016, 72, 875-881.
[http://dx.doi.org/10.1016/j.tet.2015.12.064]
[49]
Reynal, A.; Etxebarria, J.; Nieto, N.; Serres, S.; Palomares, E.; Vidal-Ferran, A.A. Bipyridine-based “naked-eye” fluorimetric Cu2+ chemosensor. Eur. J. Inorg. Chem., 2010, 1360-136.
[http://dx.doi.org/10.1002/ejic.200900887]
[50]
Zong, L.Y.; Song, Y.C.; Li, Q.Q.; Li, Z.A. “turn-on” fluorescence probe towards copper ions based on core-substitued naphthalene diimide. Sens. Actuators B Chem., 2016, 226, 239-244.
[http://dx.doi.org/10.1016/j.snb.2015.11.089]
[51]
Chen, X.F.; Wang, J.Y.; Cui, J.N.; Xu, Z.C.; Peng, X.J. A ratiometric and exclusively selective CuII fluorescent probe based on internal charge transfer (ICT). Tetrahedron, 2011, 67, 4869-4873.
[http://dx.doi.org/10.1016/j.tet.2011.05.001]
[52]
Liu, Z.; Zhang, C.; Wang, X.; He, W.; Guo, Z. Design and synthesis of a ratiometric fluorescent chemosensor for Cu(II) with a fluorophore hybridization approach. Org. Lett., 2012, 14(17), 4378-4381.
[http://dx.doi.org/10.1021/ol301849z] [PMID: 22880687]
[53]
Chen, S.; Hou, P.; Foleyc, J.W.; Song, X.Z. A colorimetric and ratiometric fluorescent probe for Cu2+ with a large red shift and its imaging in living cells. RSC Advances, 2013, 3, 5591-5596.
[http://dx.doi.org/10.1039/c3ra23057k]
[54]
Sivaraman, G.; Anand, T.; Chellappa, D. Quick accessible dual mode turn-on red fluorescent chemosensor for Cu(II) and its applicability in live cell imaging. RSC Advances, 2013, 3, 17029-17033.
[http://dx.doi.org/10.1039/c3ra42109k]
[55]
Li, N.; Zong, L.Y.; Li, Q.Q.; Li, Z. An imidazole-containing core-substituted naphthalene diimide: Fluorescent sensing properties toward copper ion and optimized selectivity by tuning the solvent medium. Sens. Actuators B Chem., 2015, 207, 827-832.
[http://dx.doi.org/10.1016/j.snb.2014.10.118]
[56]
Xue, X.L.; Fang, H.B.; Chen, H.C.; Zhang, C.L.; Zhu, C.C.; Bai, Y.; He, W.J.; Guo, Z.J. In vivo fluorescence imaging for Cu2+ in live mice by a new NIR fluorescent sensor. Dyes Pigments, 2016, 130, 116-121.
[http://dx.doi.org/10.1016/j.dyepig.2016.03.017]
[57]
Ge, F.; Ye, H.; Luo, J.Z.; Wang, S.; Sun, Y.J.; Zhao, B.X.; Miao, J.Y. A new fluorescent and colorimetric chemosensor for Cu(II) based on rhodamine hydrazone and ferrocene unit. Sens. Actuators B Chem., 2013, 181, 215-220.
[http://dx.doi.org/10.1016/j.snb.2013.01.048]
[58]
Gao, W.; Yang, Y.T.; Huo, F.J.; Yin, C.X.; Xu, M.; Zhang, Y.B.; Chao, J.B.; Jin, S.; Zhang, S.P. An ICT colorimetric chemosensor and a non-ICT fluorescent chemosensor for the detection copper ion. Sens. Actuators B Chem., 2014, 193, 294-300.
[http://dx.doi.org/10.1016/j.snb.2013.11.078]
[59]
Yang, Y.T.; Huo, F.G.; Yin, C.X.; Chu, Y.Y.; Chao, J.B.; Zhang, Y.B.; Zhang, J.J.; Li, S.D.; Lv, H.G.; Zheng, A.M.; Liu, D.S. Combined spectral experiment and theoretical calculation to study the chemosensors of copper and their applications in anion bioimaging. Sens. Actuators B Chem., 2013, 177, 1189-1197.
[http://dx.doi.org/10.1016/j.snb.2012.12.043]
[60]
Huang, J.G.; Tang, M.; Liu, M.; Zhou, M.; Liu, Z.G.; Cao, Y.; Zhu, M.Y.; Liu, S.G.; Zeng, W.B. Development of a fast responsive and highly sensitive fluorescent probe for Cu2+ ion and imaging in living cells. Dyes Pigments, 2014, 107, 1-8.
[http://dx.doi.org/10.1016/j.dyepig.2014.02.022]
[61]
Wang, X.; Ma, X.; Yang, Z.; Zhang, Z.; Wen, J.; Geng, Z.; Wang, Z. An NBD-armed tetraaza macrocyclic lysosomal-targeted fluorescent probe for imaging copper(II) ions. Chem. Commun. (Camb.), 2013, 49(96), 11263-11265.
[http://dx.doi.org/10.1039/c3cc46585c] [PMID: 24153319]
[62]
Wang, H.H.; Xue, L.; Fang, Z.J.; Li, G.P.; Jiang, H. A colorimetric and fluorescent chemosensor for copper ions in aqueous media and its application in living cells. New J. Chem., 2010, 34, 1239-1242.
[http://dx.doi.org/10.1039/c0nj00168f]
[63]
Khana, R.I.; Pitchumani, K. β-Cyclodextrin included coumarin derivatives as selective fluorescent sensors for Cu2+ ions in HeLa cells. RSC Advances, 2016, 6, 20269-20275.
[http://dx.doi.org/10.1039/C6RA01522K]
[64]
Ye, H.; Ge, F.; Zhou, Y.M.; Liu, J.T.; Zhao, B.X. A new Schiff base fluorescent probe for imaging Cu2+ in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 112, 132-138.
[http://dx.doi.org/10.1016/j.saa.2013.03.093] [PMID: 23666347]
[65]
Razia, S.S.; Alia, R.; Guptaa, R.C.; Dwivedia, S.K.; Sharmab, G.; Kochb, B.; Misra, A. Phenyl-end-capped-thiophene (P-T type) based ICT fluorescent probe (D-p-A) for detection of Hg2+ and Cu2+ ions: Live cell imaging and logic operation at molecular level. J. Photochem. Photobiol. Chem., 2016, 324, 106-116.
[http://dx.doi.org/10.1016/j.jphotochem.2016.03.015]
[66]
Xu, M.; Yin, C.X.; Huo, F.J.; Zhang, Y.B.; Chao, J.B. A highly sensitive “ON-OFF-ON” fluorescent probe with three binding sites to sense copper ion and its application for cell imaging. Sens. Actuators B Chem., 2014, 204, 18-23.
[http://dx.doi.org/10.1016/j.snb.2014.07.096]
[67]
Jung, H.S.; Kwon, P.S.; Lee, J.W.; Kim, J.I.; Hong, C.S.; Kim, J.W.; Yan, S.; Lee, J.Y.; Lee, J.H.; Joo, T.; Kim, J.S. Coumarin-derived Cu(2+)-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc., 2009, 131(5), 2008-2012.
[http://dx.doi.org/10.1021/ja808611d] [PMID: 19191706]
[68]
Li, Z.; Zhao, W.; Li, X.; Zhu, Y.; Liu, C.; Wang, L.; Yu, M.; Wei, L.; Tang, M.; Zhang, H. 1,8-naphthyridine-derived Ni(2+)/Cu(2+)-selective fluorescent chemosensor with different charge transfer processses. Inorg. Chem., 2012, 51(22), 12444-12449.
[http://dx.doi.org/10.1021/ic3018453] [PMID: 23110298]
[69]
Kumar, A.; Vanita, V.; Walia, A.; Kumar, S.N. N-dimethylaminoethylaminoanthrone-A chromofluorogenic chemosensor for estimation of Cu2+ in aqueous medium and HeLa cells imaging. Sens. Actuators B Chem., 2013, 177, 904-912.
[http://dx.doi.org/10.1016/j.snb.2012.11.093]
[70]
Wang, D.; Zheng, J.Q.; Zheng, X.J.; Fang, D.C.; Yuan, D.Q.; Jin, L.P. A fluorescent chemosensor for the sequential detection of copper(II) and histidine and its biological applications. Sens. Actuators B Chem., 2016, 228, 387-394.
[http://dx.doi.org/10.1016/j.snb.2016.01.053]
[71]
Zou, C.Y.; Gao, L.Z.; Liu, T.Y.; Xu, Z.C.; Cui, J.N. A fluorescent probe based on N-butylbenzene-1,2-diamine for Cu(II) and its imaging in living cells. J. Incl. Phenom. Macrocycl. Chem., 2014, 80, 383-390.
[http://dx.doi.org/10.1007/s10847-014-0424-4]
[72]
He, G.J.; Meng, Q.T.; Zhao, X.W.; He, C.; Zhou, P.; Duan, C.Y. A new copper(II) selective fluorescence probe based on naphthalimide: Synthesis, mechanism and application in living cells. Inorg. Chem. Commun., 2016, 65, 28-31.
[http://dx.doi.org/10.1016/j.inoche.2015.10.022]
[73]
Quan, L.; Sun, T.; Lin, W.; Guan, X.; Zheng, M.; Xie, Z.; Jing, X. BODIPY fluorescent chemosensor for Cu2+ detection and its applications in living cells: Fast response and high sensitivity. J. Fluoresc., 2014, 24(3), 841-846.
[http://dx.doi.org/10.1007/s10895-014-1360-9] [PMID: 24522344]
[74]
Chou, C.Y.; Liu, S.R.; Wu, S.P. A highly selective turn-on fluorescent sensor for Cu(II) based on an NSe2 chelating moiety and its application in living cell imaging. Analyst (Lond.), 2013, 138(11), 3264-3270.
[http://dx.doi.org/10.1039/c3an00286a] [PMID: 23612188]
[75]
Wu, S.P.; Huang, Z.M.; Liu, S.R.; Chung, P.K. A pyrene-based highly selective turn-on fluorescent sensor for copper(II) ion and its application in live cell imaging. J. Fluoresc., 2012, 22(1), 253-259.
[http://dx.doi.org/10.1007/s10895-011-0955-7] [PMID: 21870075]
[76]
Wang, H.F.; Wu, S.P. A pyrene-based highly selective turn-on fluorescent sensor for copper(II) ions and its application in living cell imaging. Sens. Actuators B Chem., 2013, 181, 743-748.
[http://dx.doi.org/10.1016/j.snb.2013.01.054]
[77]
Venkatesan, P.; Wu, S.P. A turn-on fluorescent pyrene-based chemosensor for Cu(II) with live cell application. RSC Advances, 2015, 5, 42591-42596.
[http://dx.doi.org/10.1039/C5RA05440K]
[78]
He, G.J.; Zhao, X.W.; Zhang, X.L.; Fan, H.J.; Wu, S.; Li, H.Q.; He, C.; Duan, C.Y. A turn-on PET fluorescence sensor for imaging Cu2+ in living cells. New J. Chem., 2010, 34, 1055-1058.
[http://dx.doi.org/10.1039/c0nj00132e]
[79]
Ko, K.C.; Wu, J.S.; Kim, H.J.; Kwon, P.S.; Kim, J.W.; Bartsch, R.A.; Lee, J.Y.; Kim, J.S. Rationally designed fluorescence ‘turn-on’ sensor for Cu2+. Chem. Commun. (Camb.), 2011, 47(11), 3165-3167.
[http://dx.doi.org/10.1039/c0cc05421f] [PMID: 21283852]
[80]
Chen, F.J.; Hou, F.P.; Huang, L.; Cheng, J.; Liu, H.Y.; Xi, P.X.; Bai, D.C.; Zeng, Z.Z. Development of a novel fluorescent probe for copper ion in near aqueous media. Dyes Pigments, 2013, 98, 146-152.
[http://dx.doi.org/10.1016/j.dyepig.2013.01.026]
[81]
Zhou, C.; Song, Y.; Xiao, N.; Li, Y.; Xu, J. A novel highly sensitive and selective fluorescent sensor for imaging copper (II) in living cells. J. Fluoresc., 2014, 24(4), 1331-1336.
[http://dx.doi.org/10.1007/s10895-014-1419-7] [PMID: 24927699]
[82]
Swamy, K.M.K.; Ko, S.K.; Kwon, S.K.; Lee, H.N.; Mao, C.; Kim, J.M.; Lee, K.H.; Kim, J.; Shin, I.; Yoon, J. Boronic acid-linked fluorescent and colorimetric probes for copper ions. Chem. Commun. (Camb.), 2008, (45), 5915-5917.
[http://dx.doi.org/10.1039/b814167c] [PMID: 19030537]
[83]
Wang, X.; Miao, Q.; Song, T.; Yuan, Q.; Gao, J.; Liang, G. A fluorescent switch for sequentially and selectively sensing copper(II) and L-histidine in vitro and in living cells. Analyst (Lond.), 2014, 139(13), 3360-3364.
[http://dx.doi.org/10.1039/C4AN00410H] [PMID: 24855657]
[84]
Suganya, S.; Velmathi, S. MubarakAli, D. Highly selective chemosensor for nano molar detection of Cu2+ ion byfluorescent turn-on response and its application in living cells. Dyes Pigments, 2004, 104, 116-122.
[http://dx.doi.org/10.1016/j.dyepig.2014.01.001]
[85]
Anbu, S.; Ravishankaran, R.; Guedes da Silva, M.F.; Karande, A.A.; Pombeiro, A.J.L. Differentially selective chemosensor with fluorescence off-on responses on Cu(2+) and Zn(2+) ions in aqueous media and applications in pyrophosphate sensing, live cell imaging, and cytotoxicity. Inorg. Chem., 2014, 53(13), 6655-6664.
[http://dx.doi.org/10.1021/ic500313m] [PMID: 24999857]
[86]
Li, P.; Duan, X.; Chen, Z.; Liu, Y.; Xie, T.; Fang, L.; Li, X.; Yin, M.; Tang, B. A near-infrared fluorescent probe for detecting copper(II) with high selectivity and sensitivity and its biological imaging applications. Chem. Commun. (Camb.), 2011, 47(27), 7755-7757.
[http://dx.doi.org/10.1039/c1cc11885d] [PMID: 21617817]
[87]
Mistri, T.; Alam, R.; Dolai, M.; Mandal, S.K.; Khuda-Bukhsh, A.R.; Ali, M. A 7-nitrobenz-2-oxa-1,3-diazole based highly sensitive and selective turn-on chemosensor for copper(II) ion with intracellular application without cytotoxicity. Org. Biomol. Chem., 2013, 11(9), 1563-1569.
[http://dx.doi.org/10.1039/c3ob27405e] [PMID: 23354441]
[88]
Mokhir, A.; Kiel, A.; Herten, D.P.; Kraemer, R. Fluorescent sensor for Cu2+ with a tunable emission wavelength. Inorg. Chem., 2005, 44(16), 5661-5666.
[http://dx.doi.org/10.1021/ic050362d] [PMID: 16060616]
[89]
Mó, O.; Yáñez, M.; Gal, J.F.; Maria, P.C.; Decouzon, M. Enhanced Li+ binding energies in alkylbenzene derivatives: The scorpion effect. Chemistry, 2003, 9(18), 4330-4338.
[http://dx.doi.org/10.1002/chem.200304863] [PMID: 14502618]
[90]
Jing, C.; Shi, L.; Liu, X.; Long, Y.T. A single gold nanorod as a plasmon resonance energy transfer based nanosensor for high-sensitivity Cu(II) detection. Analyst (Lond.), 2014, 139(24), 6435-6439.
[http://dx.doi.org/10.1039/C4AN01456A] [PMID: 25338009]
[91]
Xu, Y.X.; Li, H.F.; Meng, X.F.; Liu, J.L.; Sun, L.N.; Fan, X.L.; Shi, L.Y. Rhodamine-modified upconversion nanoprobe for distinguishing Cu2+ from Hg2+ and live cell imaging. New J. Chem., 2016, 40, 3543-3551.
[http://dx.doi.org/10.1039/C5NJ03010B]
[92]
Yuan, L.; Lin, W.; Chen, B.; Xie, Y. Development of FRET-based ratiometric fluorescent Cu2+ chemodosimeters and the applications for living cell imaging. Org. Lett., 2012, 14(2), 432-435.
[http://dx.doi.org/10.1021/ol202706k] [PMID: 22201292]
[93]
Maitya, D. Karthigeyan. D.; Kundu, T.K.; Govindaraju, T. FRET-based rational strategy for ratiometric detection of Cu2+ and live cell imaging. Sens. Actuators B Chem., 2013, 176, 831-837.
[http://dx.doi.org/10.1016/j.snb.2012.09.071]
[94]
Guan, X.; Lin, W.; Huang, W. Development of a new rhodamine-based FRET platform and its application as a Cu2+ probe. Org. Biomol. Chem., 2014, 12(23), 3944-3949.
[http://dx.doi.org/10.1039/c4ob00131a] [PMID: 24805088]
[95]
Kar, C.; Adhikari, M.D.; Ramesh, A.; Das, G. NIR- and FRET-based sensing of Cu2+ and S2- in physiological conditions and in live cells. Inorg. Chem., 2013, 52(2), 743-752.
[http://dx.doi.org/10.1021/ic301872q] [PMID: 23302031]
[96]
Reja, S.I.; Bhalla, V.; Manchanda, S.; Kaur, G.; Kumar, M. Chemodosimeter approach for nanomolar detection of Cu2+ ions and their bio-imaging in PC3 cell lines. RSC Advances, 2014, 4, 43470-43476.
[http://dx.doi.org/10.1039/C4RA08894H]
[97]
Goswami, S.; Maity, S.; Maity, A.C.; Maity, A.K.; Das, A.K.; Saha, P. A FRET-based rhodamine-benzimidazole conjugate as a Cu2+-selective colorimetric and ratiometricfluorescence probe that functions as a cytoplasm marker. RSC Advances, 2014, 4, 6300-6305.
[http://dx.doi.org/10.1039/c3ra46280c]
[98]
Hu, Z.J.; Hu, J.W.; Cui, Y.; Wang, G.N.; Zhang, X.J.; Uvdal, K.; Gao, H.W. A facile“click”reaction to fabricate a FRET-based ratiometric fluorescent Cu2+ probe. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 4467-4472.
[http://dx.doi.org/10.1039/c4tb00441h]
[99]
Pal, S.; Sen, B.; Lohar, S.; Mukherjee, M.; Banerjee, S.; Chattopadhyay, P. Effect of metal oxidation state on FRET: A Cu(I) silent but selectively Cu(II) responsive fluorescent reporter and its bioimaging applications. Dalton Trans., 2015, 44(4), 1761-1768.
[http://dx.doi.org/10.1039/C4DT03381G] [PMID: 25469486]
[100]
Muthuraj, B.; Deshmukh, R.; Trivedi, V.; Iyer, P.K. Highly selective probe detects Cu2+ and endogenous NO gas in living cell. ACS Appl. Mater. Interfaces, 2014, 6(9), 6562-6569.
[http://dx.doi.org/10.1021/am501476w] [PMID: 24703409]
[101]
Chen, Y.; Zhu, C.; Cen, J.; Li, J.; He, W.; Jiao, Y.; Guo, Z. A reversible ratiometric sensor for intracellular Cu2+ imaging: Metal coordination-altered FRET in a dual fluorophore hybrid. Chem. Commun. (Camb.), 2013, 49(69), 7632-7634.
[http://dx.doi.org/10.1039/c3cc42959h] [PMID: 23872616]
[102]
Fan, J.; Zhan, P.; Hu, M.; Sun, W.; Tang, J.; Wang, J.; Sun, S.; Song, F.; Peng, X. A fluorescent ratiometric chemodosimeter for Cu2+ based on TBET and its application in living cells. Org. Lett., 2013, 15(3), 492-495.
[http://dx.doi.org/10.1021/ol3032889] [PMID: 23339382]
[103]
Zhou, L.; Zhang, X.; Wang, Q.; Lv, Y.; Mao, G.; Luo, A.; Wu, Y.; Wu, Y.; Zhang, J.; Tan, W. Molecular engineering of a TBET-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues. J. Am. Chem. Soc., 2014, 136(28), 9838-9841.
[http://dx.doi.org/10.1021/ja504015t] [PMID: 24967610]
[104]
Sharma, S.; Hundala, M.S.; Singh, N.; Hundal, G. Nanomolar fluorogenic recognition of Cu(II) in aqueous medium-A highly selective “on-off” probe based on mesitylene derivative. Sens. Actuators B Chem., 2013, 188, 590-596.
[http://dx.doi.org/10.1016/j.snb.2013.07.071]
[105]
Zhai, D.P.; Yang, J.; Guo, Z.Y.; Wang, Q.S.; Ouyang, J. Afluorescent probe for the detection of Mg(II) and Cu(II) and its application for imaging in living cells. RSC Advances, 2014, 4, 46800-46805.
[http://dx.doi.org/10.1039/C4RA06635A]
[106]
Yang, C.Y.; Chen, Y.; Wu, K.; Wei, T.; Wang, J.L.; Zhang, S.S.; Han, Y.F. A reactive probe for Cu2+ based on the ESIPT mechanism and its application in live-cell imaging. Anal. Methods, 2015, 7, 3327-3330.
[http://dx.doi.org/10.1039/C5AY00224A]
[107]
Xie, Y.; Wei, P.; Li, X.; Hong, T.; Zhang, K.; Furuta, H. Macrocycle contraction and expansion of a dihydrosapphyrin isomer. J. Am. Chem. Soc., 2013, 135(51), 19119-19122.
[http://dx.doi.org/10.1021/ja4112644] [PMID: 24313813]
[108]
Xie, Y.; Ding, Y.; Li, X.; Wang, C.; Hill, J.P.; Ariga, K.; Zhang, W.; Zhu, W. Selective, sensitive and reversible “turn-on” fluorescent cyanide probes based on 2,2′-dipyridylaminoanthracene-Cu2+ ensembles. Chem. Commun. (Camb.), 2012, 48(94), 11513-11515.
[http://dx.doi.org/10.1039/c2cc36140j] [PMID: 23090603]
[109]
Ding, Y.; Xie, Y.; Li, X.; Hill, J.P.; Zhang, W.; Zhu, W. Selective and sensitive “turn-on” fluorescent Zn2+ sensors based on di- and tripyrrins with readily modulated emission wavelengths. Chem. Commun. (Camb.), 2011, 47(19), 5431-5433.
[http://dx.doi.org/10.1039/c1cc11493j] [PMID: 21483926]
[110]
Ding, Y.; Zhu, W.H.; Xie, Y. Development of ion chemosensors based on porphyrin analogues. Chem. Rev., 2017, 117(4), 2203-2256.
[http://dx.doi.org/10.1021/acs.chemrev.6b00021] [PMID: 27078087]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy