Electrospinning is a very simple, scalable and affordable technique, widely adopted to produce one-dimensional nanostructures
featured by cross-sectional diameters ranging from tens to hundreds of nanometers and by tunable composition, porosity
and specific surface area. It allows obtaining nanostructured materials with a large spectrum of suitably engineered physicochemical
properties to meet the requirements of a wide variety of advanced applications. For this reason, electrospun nanomaterials
have gathered great attention in a multiplicity of fields, including electronics, energy harvesting, generation and storage,
food industry, environmental protection and remediation. They have been successfully utilized to manufacture diodes, photodetectors,
field-effect transistors, electrochromic devices, solar cells, fuel cells, supercapacitors, batteries, cells for hydrogen production,
piezoelectric devices, smart packaging, protective clothing, chemical, biological and gas sensors, photocatalysts for
abatement of pollutants, cells for water treatment, membranes for ultrafiltration and oil-adsorption.
The recent advances in the electrospinning technology have promoted the exploitation of the huge potential of the electrospun
nanomaterials also in biomedicine and biotechnology. A wide range of natural and synthetic biodegradable biopolymers
can be electrospun into fibrous mats with tailored properties, such as hierarchical porosity and pore interconnectivity, fiber
morphology and alignment, mat texture. Functional additives can be incorporated into the spinnable solution to obtain composite
fibers with enhanced performance or stimuli-responsiveness. In addition, the fiber surface can be subsequently processed to
acquire further specific biochemical characteristics via the introduction of functional species. This allows obtaining polymer
matrixes consisting of randomly-oriented or aligned fibers endowed with suitable requirements for application in healthcare,
biopharmaceutics and biomedical engineering, as devices for wound dressing and healing, delivery and controlled release of
drugs and therapeutic agents, tissue regeneration and engineering.
Since its appearance in the field of biomaterials in 2001, electrospinning has been widely used in each sector of the
healthcare-related sciences. Several exhaustive review papers are available in the literature illustrating the outstanding results
and impressive advances achieved in the last years in biomedicine and biopharmaceutics.
The mini thematic issue entitled “Frontier research applications of electrospun nanomaterials in healthcare” proposes
some representative examples to highlight the recent progresses in drug delivery and wound dressing technology. A thematic
issue, alone, cannot cover the plethora of biomedical and biopharmaceutical applications for which electrospun nanomaterials
are nowadays designed and utilized. This mini thematic issue, including three contributions, merely aims at witnessing the incessant
and increasing efforts the Scientific Community devotes to move beyond the current state of the electrospun nanomaterial
technology in the field of drug delivery and wound dressing.
Poly(ethylene glycol), PEG, and poly(lactic-co-glycolic acid), PLGA, are safe polymers very frequently utilized in the field
of drug delivery. In particular, PEG-functionalized PLGA has significantly reduced systemic clearance, which is particularly
important for the development of clinically relevant targeted therapies. The first article in the special issue by Fazio et al. [1]
proposes the development of two new drug delivery systems based on electrospun PEGylated-PLGA scaffolds. The scaffolds
are co-loaded with silibinin, a flavonolignan with promising anti-neoplastic effects, and two different types of nanoparticles
(Au/Ag and Fe2O3), which render PEG-PLGA-SLB systems responsive to different external stimuli. The system PEG-PLGASLB-
Au/Ag is designed to release the therapeutic agent in proximity of tumor cells under the localized photothermal effect due
to the resonant absorption of visible radiation by Au/Ag nanoparticles, whereas in the system PEG-PLGA-SLB-Fe2O3 the drug
delivery is driven by the magnetic field action. Both the optically- and magnetically-activated systems enable the effective and
controlled release of silibinin for a definite time interval in the targeted areas.
Poly(methacrylic acid), PMAA, is a biocompatible and hydrophilic material, whose carboxylic acid groups can be conjugated
with bioactive substances, such as drugs, or inorganic nanoparticles. In biomedical applications, PMAA hydrogel is often
utilized to fabricate carrier vessels for delivery of therapeutic cargoes. The second paper in the thematic issue by Neri et al. [2]
is focused on the development of a novel smart multi-component drug delivery system, based on stimuli-responsive PMAA-Ag
electrospun scaffolds, produced via an UV-enhanced two-step chemical bath process. The performance of the obtained scaffolds
is for the first time evaluated in the controlled release of Sorafenib, a therapeutic agent generally used to treat advanced renal cell carcinoma, under the application of heat or light radiation with wavelength close to the Ag surface plasmon resonance.
The evaluation tests lead to interesting preliminary results.
Electrospun nanofibrous mats are structurally similar to the extracellular matrix in tissues, composed of fibrillar collagen. In
particular, polyaniline/chitosan (PANI/CS) electrospun composite dressings are able to promote proliferation of human fibroblasts,
potentially leading to the growth of new skin in wounds. They combine the inherent conductivity of PANI and antibacterial,
antifungal, mucoadhesive, haemostatic and immunological properties of CS, the N-deacetylated derivative of chitin. The
third paper in the thematic issue by Moutsatsou et al. [3] deals with PANI/CS dressings and the evaluation of their antibacterial
properties against gram positive and gram negative bacterial strains, namely Bacillus subtilis and Escherichia coli, respectively.
High PANI content in the PANI/CS blend utilized to spin the mats are found to result in increased bactericidal activity against
both infective agents.
It is my hope that the papers in this mini thematic issue will represent an interesting addition to the existing literature, serving
and inspiring all Readers.
I would like to express my gratitude to all the Authors for their enthusiastic participation. A special thank-you to all the Reviewers
for their valuable contribution in improving the submitted papers.