Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Engineering Three-Dimensional Cardiac Microtissues for Potential Drug Screening Applications

Author(s): L. Wang, G. Huang, B. Sha, S. Wang, Y.L. Han, J. Wu, Y. Li, Y. Du, T.J. Lu and F. Xu

Volume 21, Issue 22, 2014

Page: [2497 - 2509] Pages: 13

DOI: 10.2174/0929867321666131212152408

Price: $65

Abstract

Heart disease is one of the major global health issues. Despite rapid advances in cardiac tissue engineering, limited successful strategies have been achieved to cure cardiovascular diseases. This situation is mainly due to poor understanding of the mechanism of diverse heart diseases and unavailability of effective in vitro heart tissue models for cardiovascular drug screening. With the development of microengineering technologies, three-dimensional (3D) cardiac microtissue (CMT) models, mimicking 3D architectural microenvironment of native heart tissues, have been developed. The engineered 3D CMT models hold greater potential to be used for assessing effective drugs candidates than traditional twodimensional cardiomyocyte culture models. This review discusses the development of 3D CMT models and highlights their potential applications for high-throughput screening of cardiovascular drug candidates.

Keywords: Bioprinting, cardiac microtissues, cell encapsulation, cell microenvironment, drug screening, high throughput, hydrogels, stem cells, three dimensional, tissue engineering.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy