Full Text Inquiry
ePub [ahead of print] Inquiry Form:

Thank you for your interest in the full text of this ePub article. The full text of this article is not available as yet. Could you please complete and submit the brief EPub full text inquiry form given below and one of our representatives will contact you shortly with details of the article, it's availability, and price on order.

Article Detail:

An Anti-EGFR/anti- HER2 Bispecific Antibody with Enhanced Antitumor Activity Against Acquired Gefitinib-Resistant NSCLC Cells

Background: Acquired resistance to epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR-TKIs) is a recurrent phenomenon during clinical therapy of non-small-cell lung cancer (NSCLC). Studies have shown that HER2 is a key factor contributing to drug resistance in a variety of cancers. Furthermore, we have observed that HER2 is overexpressed in PC-9 NSCLC cells with acquired gefitinib-resistance (PC-9/GR) as compared to that in PC-9 cells.

Objective: We hypothesized that blocking both EGFR and HER2 may serve as a potential strategy for the treatment of NSCLC with acquired gefitinib-resistance.

Methods: To target both EGFR and HER2 simultaneously, we developed a bispecific antibody HECrossMAb, which was derived from a humanized Cetuximab and Trastuzumab. The binding affinity of HECrossMAb for EGFR and HER2 was measured using an enzyme-linked immunosorbent assay. The MTT assay was used to determine the effect of HECrossMAb on the proliferation of PC-9 and PC-9/GR cells in vitro. Finally, the effect of HECrossMAb on PI3K/AKT signaling and associated transcription factors was measured using western blot analysis.

Results: Our results showed that HECrossMAb exerts enhanced cytotoxicity in both PC-9 and PC-9/GR cells by inhibiting the activation of PI3K/AKT signaling and expression of relevant transcription factors such as AEG-1, c-Myc, and c-Fos.

Conclusion: Our results suggest that HECrossMAb may function as a potential therapeutic agent for treating NSCLC overexpressing EGFR and HER2.

Journal Title: Protein & Peptide Letters

Price: $95

Inquiry Form

4 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.