Full Text Inquiry
ePub [ahead of print] Inquiry Form:

Thank you for your interest in the full text of this ePub article. The full text of this article is not available as yet. Could you please complete and submit the brief EPub full text inquiry form given below and one of our representatives will contact you shortly with details of the article, it's availability, and price on order.


Article Detail:

Title:
Recent development of machine learning methods in sumoylation sites prediction

Abstract:
Sumoylation of proteins is an important reversible post-translational modification of proteins and mediates a variety of cellular processes. Sumo-modified proteins can change their subcellular localization, activity and stability. In addition, it also plays an important role in various cellular processes such as transcriptional regulation and signal transduction. The abnormal sumoylation is involved in many diseases, including neurodegeneration and immune-related diseases, as well as the development of cancer. Therefore, identification of the sumoylation site (SUMO site) is fundamental to understanding their molecular mechanisms and regulatory roles. In contrast to labor-intensive and costly experimental approaches, computational prediction of sumoylation sites in silico also attracted much attention for its accuracy, convenience and speed. At present, many computational prediction models have been used to identify SUMO sites, but these contents have not been comprehensively summarized and reviewed. Therefore, the research progress of relevant models is summarized and discussed in this paper. We will briefly summarize the development of bioinformatics methods on sumoylation site prediction. We will mainly focus on the benchmark dataset construction, feature extraction, machine learning method, published results and online tools. We hope the review will provide more help for wet-experimental scholars.

Journal Title: Current Medicinal Chemistry

Price: $95


Inquiry Form

5 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.