Bio-Inspired Nanotechnology

Design and Characterization of Smart Supramolecular Nanomaterials and their Biohybrids

Author(s): Jyothy G. Vijayan * .

Pp: 1-15 (15)

DOI: 10.2174/9789815080179123010003

* (Excluding Mailing and Handling)

Abstract

Over the past few years, much effort has been taken to explore the applications of nanoparticle-based structures in different fields such as nanomedicine, molecular imaging, etc.. Supramolecular analytical methods have attracted researchers due to their chemical formula, flexibility, convenience, and modularity for the synthesis of nanoparticles. The incorporation of functional ligands on the surface of supramolecular nanoparticles helps to improve their performance in many areas. Fabrication of supra molecular materials with uniform size gives more advantages of using them in different fields. Characterization techniques like positron emission tomography imaging (PET), magnetic resonance imaging (MRI), fluorescence studies, scanning electron microscopy (SEM), and UV-Vis studies help to identify the molecular images and structure effectively. Supramolecular systems are used as an effective technique in the nano-design of supramolecular nano-systems. They enhance the solubility, modification of surface properties, bioconjugation of nanoparticles due to the supramolecular recognition properties, and supramolecular materials that are applied for the removal of targeted molecules. The designing process makes it able to function in complex matrices. This chapter discusses the design, synthesis and characterization of supramolecular nanostructures and their hybrids and also discusses their application in different fields. 


Keywords: Characterization techniques, Complex matrices, Emulsion, Fluorescence studies, FT-IR studies, Functionalized nanomaterials, Hybrid nanoparticles, Ligands, Magnetic resonance imaging (MRI), Modularity, Nano precipitation nano structure, Nanoaggregation, Non-covalent interaction, Positron emission tomography imaging (PET), Scanning electron microscopy (SEM), Selfassembly, Stacking, Supramolecular nanostructure and UV-Vis studies.

Related Journals
Related Books
© 2024 Bentham Science Publishers | Privacy Policy