Anatomy, Modeling and Biomaterial Fabrication for Dental and Maxillofacial Applications

Surface Modifications

Author(s): Andy H. Choi and Besim Ben-Nissan

Pp: 118-167 (50)

Doi: 10.2174/9781681086910118010016

* (Excluding Mailing and Handling)


Over the years, the research and applications of calcium phosphate materials as nanocoatings for dental and biomedical applications have undergone a revolution to become a state-of-the-art approach for improving osseointegration of implants and devices. Determination of stresses within a nanocoating is vital as its mechanical stability is governed by factors such as deposition method and heat treatments applied. The presence of external mechanical loading as well as the possibility of the coating to crack and spall because of inbuilt stresses (whether they are tensile or compressive) will affect the successful deployment of biomaterial implants. The most commonly used methods for characterizing the performance of micro- and nanocoatings on substrates can generally be divided into the measurement of coating properties and adhesion strength. Several excellent methods that can be used in thin film mechanical properties evaluation, and some of the commonly used methods are nanoindentation, tensile testing, scratch testing, adhesion and wear testing, pin-on-disk testing, pull-out test, and bending and bulge testing. Furthermore, the biomechanical characteristics of nanocoatings such as hydroxyapatite deposited on metallic substrates have also been examined using nanomechanical testing and nanoindentation simulated via the finite element approach.

Keywords: Anodization, Bone morphogenetic protein, Calcium phosphate, Collagen, Drug delivery, Finite element analysis, Hydroxyapatite HAp, Interfacial adhesion, Mechanical properties, Microtensile testing, Nanocoatings, Nanocomposite coating, Nanoindentation, Peptide, Plasma spraying, Sol-gel, Stem cell.

Related Journals
Related Books
© 2022 Bentham Science Publishers | Privacy Policy