Preface

The crisis of the SARS-CoV-2 pandemic has meant a slight slowdown in the upward line of publications that have been observed since 2000 (355 publications) until 2017. From 2018 (2253 papers) to 2020 (2424 papers), there has been some stagnation in the annual production of works on pharmacogenomics (2536 papers in 2021). The necessary haste in the approval of anti-COVID vaccines and the relaxation in the requirements by the FDA and other regulatory bodies for the approval of drugs has also contributed to the fact that precision medicine has suffered, if not a setback but a certain slowdown. Although the genomic component of COVID susceptibility and vulnerability to more severe COVID has been fairly well documented, work on COVID pharmacogenomics has been sparse (77 papers in 2020; 112 in 2021; 68 in 2022) in comparison to the number of papers on COVID-19 (91,347 papers in 2020; 137,409 in 2021; 85,123 papers up to August 2022).

Hopefully, the cooling of the pandemic will help regain interest in the pharmacogenomics of prevalent diseases (cardiovascular disorders, cancer, diseases of the nervous system) that account for 80% of morbidity and mortality in OECD countries.

In the specific territory of pharmacogenetics, it would be highly desirable for the regulatory authorities of pharmaceutical development to motivate the pharmaceutical industry so that all medicines placed on the world market have sufficient information on the pharmacogenetic profile of each medicinal product. A second higher-level requirement is that the scientific community begin to assume that the network of pharmagenes responsible for the therapeutic outcome of each pharmacological treatment depends on at least five categories of genes (pathogenic, mechanical, metabolic, transporter, pleiotropic). It also seems evident that the greater the number of defective pharmagenes, the greater the therapeutic failure.

Bentham Science Publishers and Current Pharmacogenomics and Personalized Medicine desire to contribute to the necessary development of pharmacogenomics to optimize the therapeutic response to the limited pharmaceutical resources available on the market to efficiently combat disease and preserve people's health.

Ramón Cacabelos

Editor-in-Chief

International Center of Neuroscience and Genomic Medicine

EuroEspes Biomedical Research Center, Corunna,

Spain

E-mail: rcacabelos@euroespes.com

DISCLAIMER: The above article has been published, as is, ahead-of-print, to provide early visibility but is not the final version. Major publication processes like copyediting, proofing, typesetting and further review are still to be done and may lead to changes in the final published version, if it is eventually published. All legal disclaimers that apply to the final published article also apply to this ahead-of-print version.