Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Advances of Silver Nanoparticles in Cancer Diagnosis and Treatment

Author(s): Tran Q. Huy*, Pham T.M. Huyen, Anh-Tuan Le and Matteo Tonezzer*

Volume 20, Issue 11, 2020

Page: [1276 - 1287] Pages: 12

DOI: 10.2174/1871520619666190710121727

Price: $65

Abstract

Background: Silver nanoparticles (AgNPs) are well-known as a promising antimicrobial material; they have been widely used in many commercial products against pathogenic agents. Despite a growing concern regarding the cytotoxicity, AgNPs still have attracted considerable interest worldwide to develop a new generation of diagnostic tool and effective treatment solution for cancer cells.

Objective: This paper aims to review the advances of AgNPs applied for cancer diagnosis and treatment.

Methods: The database has been collected, screened and analysed through up-to-date scientific articles published from 2007 to May 2019 in peer-reviewed international journals.

Results: The findings of the database have been analysed and divided into three parts of the text that deal with AgNPs in cancer diagnosis, their cytotoxicity, and the role as carrier systems for cancer treatment. Thanks to their optical properties, high conductivity and small size, AgNPs have been demonstrated to play an essential role in enhancing signals and sensitivity in various biosensing platforms. Furthermore, AgNPs also can be used directly or developed as a drug delivery system for cancer treatment.

Conclusion: The review paper will help readers understand more clearly and systematically the role and advances of AgNPs in cancer diagnosis and treatment.

Keywords: AgNPs, cancer diagnosis, cancer treatment, drug delivery system, nanomaterial, nanotoxicity.

Graphical Abstract
[1]
Roco, M.C. The Long View of Nanotechnology Development: The National Nanotechnology Initiative at 10 Years. J. Nanopart. Res., 2011, 13(2), 427-445.
[http://dx.doi.org/10.1007/s11051-010-0192-z]
[2]
Alarcon-Angeles, G.; Álvarez-Romero, G.A.; Merkoçi, A. Emerging nanomaterials for analytical detection. Compr. Anal. Chem., 2016, 74, 195-246.
[http://dx.doi.org/10.1016/bs.coac.2016.03.022]
[3]
Tran, Q.H.; Nguyen, V.Q.; Le, A-T. silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2013, 4(3), 033001
[http://dx.doi.org/10.1088/2043-6262/4/3/033001]
[4]
Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M.M.Q. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. Int. J. Nanomedicine, 2014, 9(1), 2399-2407.
[PMID: 24876773]
[5]
Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett., 2012, 2(1), 32.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[6]
Thuc, D.T.; Huy, T.Q.; Hoang, L.H.; Tien, B.C.; Van Chung, P.; Thuy, N.T.; Le, A.T. green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Mater. Lett., 2016, 181, 173-177.
[http://dx.doi.org/10.1016/j.matlet.2016.06.008]
[7]
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond.), 2007, 3(1), 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[8]
Lara, H.; Ayala-Núñez, N.; Ixtepan Turrent, L.; Rodríguez Padilla, C. bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol., 2010, 26, 615-621.
[http://dx.doi.org/10.1007/s11274-009-0211-3]
[9]
Le, A-T.; Le, T.T.; Nguyen, V.Q.; Tran, H.H.; Dang, D.A.; Tran, Q.H.; Vu, D.L. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2012, 3(4), 045007
[http://dx.doi.org/10.1088/2043-6262/3/4/045007]
[10]
Marambio-Jones, C.; Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Rev., 2010, 12, 1531-1551.
[11]
Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol., 2012, 112(5), 841-852.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05253.x] [PMID: 22324439]
[12]
Thuc, D.T.; Huy, T.Q.; Hoang, L.H.; Hoang, T.H.; Le, A.T.; Anh, D.D. antibacterial activity of electrochemically synthesized colloidal silver nanoparticles against hospital-acquired infections. J. Electron. Mater., 2017, 46(6), 3433-3439.
[http://dx.doi.org/10.1007/s11664-017-5315-1]
[13]
Marassi, V.; Di Cristo, L.; Smith, S.G.J.; Ortelli, S.; Blosi, M.; Costa, A.L.; Reschiglian, P.; Volkov, Y.; Prina-Mello, A. Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. R. Soc. Open Sci., 2018, 5(1), 171113
[http://dx.doi.org/10.1098/rsos.171113] [PMID: 29410826]
[14]
Adama, J.K.; Naidua, K.S.B. Silver nanoparticles in biomedical applications: Recent advances and perspectives. 10th Int. Conf. Nanomed. Nanotechnol. Health Care, Bangkok,2016, Vol. 7, p. 67.
[15]
Nasrollahzadeh, M.; Mohammad Sajadi, S.; Babaei, F.; Maham, M. Euphorbia helioscopia Linn as a green source for synthesis of silver nanoparticles and their optical and catalytic properties. J. Colloid Interface Sci., 2015, 450, 374-380.
[http://dx.doi.org/10.1016/j.jcis.2015.03.033] [PMID: 25854504]
[16]
Khan, Z.U.H.; Khan, A.; Shah, A.; Pingyu, W.; Chen, Y.; Khan, G.M.; Khan, A.U.; Tahir, K.; Muhammad, N.; Khan, H.U. Enhanced photocatalytic and electrocatalytic applications of green synthesized silver nanoparticles. J. Mol. Liq., 2016, 220, 248-257.
[http://dx.doi.org/10.1016/j.molliq.2016.04.082]
[18]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[19]
Asadzadeh-Firouzabadi, A.; Zare, H.R. preparation and application of agnps/swcnts nanohybrid as an electroactive label for sensitive detection of mirna related to lung cancer. Sens. Actuators B Chem., 2018, 260, 824-831.
[http://dx.doi.org/10.1016/j.snb.2017.12.195]
[20]
Bayford, R.; Rademacher, T.; Roitt, I.; Wang, S.X. Emerging applications of nanotechnology for diagnosis and therapy of disease: A review. Physiol. Meas., 2017, 38(8), R183-R203.
[http://dx.doi.org/10.1088/1361-6579/aa7182] [PMID: 28480874]
[21]
Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.S.; Chen, G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today, 2015, 20(5), 595-601.
[http://dx.doi.org/10.1016/j.drudis.2014.11.014] [PMID: 25543008]
[22]
Sriram, M.I.; Kanth, S.B.M.; Kalishwaralal, K.; Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomedicine, 2010, 5(1), 753-762.
[PMID: 21042421]
[23]
El Deeb, N.M.; El-Sherbiny, I.M.; El-Aassar, M.R.; Hafez, E.E. Novel trend in colon cancer therapy using silver nanoparticles synthesized by honey bee. Int. J. Nanotechnol. Nanomed., 2015, 6(2), 1-6.
[24]
Peng, X.H.; Qian, X.; Mao, H.; Wang, A.Y.; Chen, Z.G.; Nie, S.; Shin, D.M. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int. J. Nanomedicine, 2008, 3(3), 311-321.
[PMID: 18990940]
[25]
Dreaden, E.C.; Austin, L.A.; Mackey, M.A.; El-Sayed, M.A. Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther. Deliv., 2012, 3(4), 457-478.
[http://dx.doi.org/10.4155/tde.12.21] [PMID: 22834077]
[26]
Durymanov, M.O.; Rosenkranz, A.A.; Sobolev, A.S. Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics, 2015, 5(9), 1007-1020.
[http://dx.doi.org/10.7150/thno.11742] [PMID: 26155316]
[27]
Vlăsceanu, G.M.; Marin, Ş.; Ţiplea, R.E.; Bucur, I.R.; Lemnaru, M.; Marin, M.M.; Grumezescu, A.M.; Andronescu, E. Silver Nanoparticles in Cancer Therapy. In: Nanobiomaterials in Cancer Therapy; William Andrew: New York, 2016; Vol. 7, pp. 29-56.
[http://dx.doi.org/10.1016/B978-0-323-42863-7.00002-5]
[28]
[29]
Tai, S.P.; Wu, Y.; Shieh, D.B.; Chen, L.J.; Lin, K.J.; Yu, C.H.; Chu, S.W.; Chang, C.H.; Shi, X.Y.; Wen, Y.C.; Lin, K.H.; Liu, T.M.; Sun, C.K. Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles. Adv. Mater., 2007, 19(24), 4520-4523.
[http://dx.doi.org/10.1002/adma.200602213]
[30]
Pubmed.. https://www.ncbi.nlm.nih.gov/pubmed (Accessed May 19, 2016)
[31]
Gong, J.L.; Liang, Y.; Huang, Y.; Chen, J.W.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosens. Bioelectron., 2007, 22(7), 1501-1507.
[http://dx.doi.org/10.1016/j.bios.2006.07.004] [PMID: 16971110]
[32]
Tang, L.; Dong, C.; Ren, J. Highly sensitive homogenous immunoassay of cancer biomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy. Talanta, 2010, 81(4-5), 1560-1567.
[http://dx.doi.org/10.1016/j.talanta.2010.03.002] [PMID: 20441939]
[33]
Feng, S.; Chen, R.; Lin, J.; Pan, J.; Chen, G.; Li, Y.; Cheng, M.; Huang, Z.; Chen, J.; Zeng, H. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens. Bioelectron., 2010, 25(11), 2414-2419.
[http://dx.doi.org/10.1016/j.bios.2010.03.033] [PMID: 20427174]
[34]
Wu, W.; Yi, P.; He, P.; Jing, T.; Liao, K.; Yang, K.; Wang, H. Nanosilver-doped DNA polyion complex membrane for electrochemical immunoassay of carcinoembryonic antigen using nanogold-labeled secondary antibodies. Anal. Chim. Acta, 2010, 673(2), 126-132.
[http://dx.doi.org/10.1016/j.aca.2010.05.033] [PMID: 20599025]
[35]
Wu, P.; Gao, Y.; Lu, Y.; Zhang, H.; Cai, C. High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures. Analyst (Lond.), 2013, 138(21), 6501-6510.
[http://dx.doi.org/10.1039/c3an01375h] [PMID: 24040647]
[36]
Wang, H.; Zhang, Y.; Yu, H.; Wu, D.; Ma, H.; Li, H.; Du, B.; Wei, Q. Label-free electrochemical immunosensor for prostate-specific antigen based on silver hybridized mesoporous silica nanoparticles. Anal. Biochem., 2013, 434(1), 123-127.
[http://dx.doi.org/10.1016/j.ab.2012.11.012] [PMID: 23201390]
[37]
Li, Y.; Han, J.; Chen, R.; Ren, X.; Wei, Q. Label electrochemical immunosensor for prostate-specific antigen based on graphene and silver hybridized mesoporous silica. Anal. Biochem., 2015, 469, 76-82.
[http://dx.doi.org/10.1016/j.ab.2014.09.022] [PMID: 25448622]
[38]
Ma, H.; Li, X.; Yan, T.; Li, Y.; Zhang, Y.; Wu, D.; Wei, Q.; Du, B. Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework. Biosens. Bioelectron., 2016, 79, 379-385.
[http://dx.doi.org/10.1016/j.bios.2015.12.080] [PMID: 26735872]
[39]
Rong, Z.; Wang, C.; Wang, J.; Wang, D.; Xiao, R.; Wang, S. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosens. Bioelectron., 2016, 84, 15-21.
[http://dx.doi.org/10.1016/j.bios.2016.04.006] [PMID: 27149164]
[40]
Benvidi, A.; Jahanbani, S. Self-assembled monolayer of SH-DNA strand on a magnetic bar carbon paste electrode modified with Fe3O4@Ag nanoparticles for detection of breast cancer mutation. J. Electroanal. Chem. (Lausanne Switz.), 2016, 768, 47-54.
[http://dx.doi.org/10.1016/j.jelechem.2016.02.038]
[41]
Yu, S.; Zou, G.; Wei, Q. Ultrasensitive electrochemical immunosensor for quantitative detection of tumor specific growth factor by using Ag@CeO2 nanocomposite as labels. Talanta, 2016, 156-157, 11-17.
[http://dx.doi.org/10.1016/j.talanta.2016.04.050] [PMID: 27260429]
[42]
Zhang, L.; Zhang, Y.; Hu, Y.; Fan, Q.; Yang, W.; Li, A.; Li, S.; Huang, W.; Wang, L. Refractive index dependent real-time plasmonic nanoprobes on a single silver nanocube for ultrasensitive detection of the lung cancer-associated miRNAs. Chem. Commun. (Camb.), 2015, 51(2), 294-297.
[http://dx.doi.org/10.1039/C4CC06663D] [PMID: 25407574]
[43]
Poon, C.; Chan, H.; Li, H. Direct Detection of Prostate Specific Antigen By Darkfield Microscopy Using Single Immunotargeting Silver Nanoparticle. Sens. Actuators B Chem., 2014, 190, 737-744.
[http://dx.doi.org/10.1016/j.snb.2013.09.057]
[44]
Salahandish, R.; Ghaffarinejad, A.; Omidinia, E.; Zargartalebi, H.; Majidzadeh-A, K.; Naghib, S.M.; Sanati-Nezhad, A. Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene. Biosens. Bioelectron., 2018, 120, 129-136.
[http://dx.doi.org/10.1016/j.bios.2018.08.025] [PMID: 30172235]
[45]
Borghei, Y.S.; Hosseini, M.; Ganjali, M.R.; Hosseinkhani, S. A novel BRCA1 gene deletion detection in human breast carcinoma MCF-7 cells through FRET between quantum dots and silver nanoclusters. J. Pharm. Biomed. Anal., 2018, 152, 81-88.
[http://dx.doi.org/10.1016/j.jpba.2018.01.014] [PMID: 29414022]
[46]
Hassanpour, S.; Hasanzadeh, M.; Saadati, A.; Shadjou, N.; Soleymani, J.; Jouyban, A. A novel paper based immunoassay of breast cancer specific carbohydrate (CA 15.3) using silver nanoparticles-reduced graphene oxide nano-ink technology: A new platform to construction of Microfluidic Paper-Based Analytical Devices (MPADs) towards biomedical analysis. Microchem. J., 2019, 146, 345-358.
[http://dx.doi.org/10.1016/j.microc.2019.01.018]
[47]
Hasanzadeh, M.; Feyziazar, M.; Solhi, E.; Mokhtarzadeh, A.; Soleymani, J.; Shadjou, N.; Jouyban, A.; Mahboob, S. ultrasensitive immunoassay of Breast Cancer Type 1 Susceptibility Protein (BRCA1) Using Poly (Dopamine-Beta Cyclodextrine-Cetyl Trimethylammonium Bromide) doped with silver nanoparticles: A new platform in early stage diagnosis of breast cancer and efficient management. Microchem. J., 2019, 145, 778-783.
[http://dx.doi.org/10.1016/j.microc.2018.11.029]
[48]
Chen, M.; Wang, Y.; Su, H.; Mao, L.; Jiang, X.; Zhang, T.; Dai, X. Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sens. Actuators B Chem., 2018, 255, 2910-2918.
[http://dx.doi.org/10.1016/j.snb.2017.09.111]
[49]
Liang, J.; Yao, C.; Li, X.; Wu, Z.; Huang, C.; Fu, Q.; Lan, C.; Cao, D.; Tang, Y. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens. Bioelectron., 2015, 69, 128-134.
[http://dx.doi.org/10.1016/j.bios.2015.02.026] [PMID: 25721976]
[50]
Lai, G.; Wang, L.; Wu, J.; Ju, H.; Yan, F. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers. Anal. Chim. Acta, 2012, 721, 1-6.
[http://dx.doi.org/10.1016/j.aca.2012.01.048] [PMID: 22405294]
[51]
Lee, S.X.; Lim, H.N.; Ibrahim, I.; Jamil, A.; Pandikumar, A.; Huang, N.M. Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen. Biosens. Bioelectron., 2017, 89(Pt 1), 673-680.
[http://dx.doi.org/10.1016/j.bios.2015.12.030] [PMID: 26718548]
[52]
Li, L.; Feng, D.; Zhang, Y. Simultaneous detection of two tumor markers using silver and gold nanoparticles decorated carbon nanospheres as labels. Anal. Biochem., 2016, 505, 59-65.
[http://dx.doi.org/10.1016/j.ab.2016.04.014] [PMID: 27156810]
[53]
Zhao, Q.; Duan, R.; Yuan, J.; Quan, Y.; Yang, H.; Xi, M. A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array. Int. J. Nanomedicine, 2014, 9(1), 1097-1104.
[PMID: 24591830]
[54]
Chen, Y.; Chen, G.; Feng, S.; Pan, J.; Zheng, X.; Su, Y.; Chen, Y.; Huang, Z.; Lin, X.; Lan, F.; Chen, R.; Zeng, H. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis. J. Biomed. Opt., 2012, 17(6), 067003
[http://dx.doi.org/10.1117/1.JBO.17.6.067003] [PMID: 22734781]
[55]
Ortega, F.G.; Fernández-Baldo, M.A.; Serrano, M.J.; Messina, G.A.; Lorente, J.A.; Raba, J. Epithelial cancer biomarker EpCAM determination in peripheral blood samples using a microfluidic immunosensor based in silver nanoparticles as platform. Sens. Actuators B Chem., 2015, 221, 248-256.
[http://dx.doi.org/10.1016/j.snb.2015.06.066]
[56]
Dadmehr, M.; Hosseini, M.; Hosseinkhani, S.; Reza Ganjali, M.; Sheikhnejad, R. Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis. Biosens. Bioelectron., 2015, 73, 108-113.
[http://dx.doi.org/10.1016/j.bios.2015.05.062] [PMID: 26056954]
[57]
Wang, G.; Jin, F.; Dai, N.; Zhong, Z.; Qing, Y.; Li, M.; Yuan, R.; Wang, D. Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles. Anal. Biochem., 2012, 422(1), 7-13.
[http://dx.doi.org/10.1016/j.ab.2011.12.024] [PMID: 22230283]
[58]
Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C, 2015, 53, 298-309.
[http://dx.doi.org/10.1016/j.msec.2015.04.048] [PMID: 26042718]
[59]
Gurunathan, S.; Han, J.W.; Eppakayala, V.; Jeyaraj, M.; Kim, J.H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res. Int., 2013, 2013, 535796
[http://dx.doi.org/10.1155/2013/535796] [PMID: 23936814]
[60]
Willmore, A.M.A.; Simón-Gracia, L.; Toome, K.; Paiste, P.; Kotamraju, V.R.; Mölder, T.; Sugahara, K.N.; Ruoslahti, E.; Braun, G.B.; Teesalu, T. Targeted silver nanoparticles for ratiometric cell phenotyping. Nanoscale, 2016, 8(17), 9096-9101.
[http://dx.doi.org/10.1039/C5NR07928D] [PMID: 26646247]
[61]
Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9(1), 257-288.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025] [PMID: 17439359]
[62]
Bhattacharyya, S.; Kudgus, R.A.; Bhattacharya, R.; Mukherjee, P. Inorganic nanoparticles in cancer therapy. Pharm. Res., 2011, 28(2), 237-259.
[http://dx.doi.org/10.1007/s11095-010-0318-0] [PMID: 21104301]
[63]
Li, Y.; Bhalli, J.A.; Ding, W.; Yan, J.; Pearce, M.G.; Sadiq, R.; Cunningham, C.K.; Jones, M.Y.; Monroe, W.A.; Howard, P.C.; Zhou, T.; Chen, T. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology, 2014, 8(Suppl. 1), 36-45.
[http://dx.doi.org/10.3109/17435390.2013.855827] [PMID: 24266757]
[64]
Rahban, M.; Divsalar, A.; Saboury, A.A.; Golestani, A. Nanotoxicity and spectroscopy studies of silver nanoparticle: Calf Thymus DNA and K562 as targets. J. Phys. Chem. C, 2010, 114(13), 5798-5803.
[http://dx.doi.org/10.1021/jp910656g]
[65]
Castiglioni, S.; Cazzaniga, A.; Perrotta, C.; Maier, J.A.M. Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells. Toxicol. Lett., 2015, 237(3), 237-243.
[http://dx.doi.org/10.1016/j.toxlet.2015.06.1707] [PMID: 26149761]
[66]
Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G. MubarakAli, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; Ganapathi, A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B Biointerfaces, 2016, 2013(106), 86-92.
[67]
Sanpui, P.; Chattopadhyay, A.; Ghosh, S.S. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl. Mater. Interfaces, 2011, 3(2), 218-228.
[http://dx.doi.org/10.1021/am100840c] [PMID: 21280584]
[68]
Awasthi, K.K.; Awasthi, A.; Kumar, N.; Roy, P.; Awasthi, K.; John, P.J. Silver nanoparticle induced cytotoxicity, oxidative stress, and DNA damage in CHO cells. J. Nanopart. Res., 2013, 15(9), 1898.
[http://dx.doi.org/10.1007/s11051-013-1898-5]
[69]
Mittal, A.K.; Tripathy, D.; Choudhary, A.; Aili, P.K.; Chatterjee, A.; Singh, I.P.; Banerjee, U.C. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng. C, 2015, 53, 120-127.
[http://dx.doi.org/10.1016/j.msec.2015.04.038] [PMID: 26042698]
[70]
Avalos, A.; Haza, A.I.; Mateo, D.; Morales, P. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J. Appl. Toxicol., 2014, 34(4), 413-423.
[http://dx.doi.org/10.1002/jat.2957] [PMID: 24243578]
[71]
Jannatul Firdous, M.; Lalitha, P. Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog. Biomater., 2015, 4(2-4), 113-121.
[http://dx.doi.org/10.1007/s40204-015-0042-2] [PMID: 26566469]
[72]
Sathishkumar, G.; Gobinath, C.; Wilson, A.; Sivaramakrishnan, S. Dendrophthoe falcata (L.f) Ettingsh (Neem mistletoe): A potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 128, 285-290.
[http://dx.doi.org/10.1016/j.saa.2014.02.096] [PMID: 24681313]
[73]
Baharara, J.; Namvar, F.; Ramezani, T.; Mousavi, M.; Mohamad, R. Silver nanoparticles biosynthesized using Achillea biebersteinii flower extract: Apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules, 2015, 20(2), 2693-2706.
[http://dx.doi.org/10.3390/molecules20022693] [PMID: 25665064]
[74]
Venil, C.K.; Sathishkumar, P.; Malathi, M.; Usha, R.; Jayakumar, R.; Yusoff, A.R.M.; Ahmad, W.A. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Mater. Sci. Eng. C, 2016, 59, 228-234.
[http://dx.doi.org/10.1016/j.msec.2015.10.019] [PMID: 26652368]
[75]
El-Hussein, A.; Mfouo-Tynga, I.; Abdel-Harith, M.; Abrahamse, H. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J. Photochem. Photobiol. B, 2015, 153, 67-75.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.08.028] [PMID: 26398813]
[76]
Ong, C.; Lim, J.Z.Z.; Ng, C-T.; Li, J.J.; Yung, L-Y.L.; Bay, B-H. Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr. Med. Chem., 2013, 20(6), 772-781.
[PMID: 23298139]
[77]
AshaRani. P.V.; Low Kah Mun, G.; Hande, M.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009, 3(22016), 279-290.
[78]
El-Rafie, H.M.; El-Rafie, M.H.; Zahran, M.K. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr. Polym., 2013, 96(2), 403-410.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.071] [PMID: 23768580]
[79]
Fiorino, D.J. Voluntary initiatives, regulation and nanotechnology oversight: Charting a PathOber. Proj. Emerg. Nanotechnol., 2010, 19, 4-52.
[80]
Pourali, P.; Yahyaei, B. Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. J. Trace Elem. Med. Biol., 2016, 34, 22-31.
[http://dx.doi.org/10.1016/j.jtemb.2015.11.004] [PMID: 26854241]
[81]
Aruna, U.; Rajalakshmi, R.; Vinesha, I.M.Y.V.; Sushma, M.; Vandana, K.; Vijay Kumar, N.; Rangampet, A. Role of chitosan nanoparticles in cancer therapy. J. Pharm. Res. Int., 2013, 4(3), 318-324.
[82]
Nayak, D.; Minz, A.P.; Ashe, S.; Rauta, P.R.; Kumari, M.; Chopra, P.; Nayak, B. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J. Colloid Interface Sci., 2016, 470, 142-152.
[http://dx.doi.org/10.1016/j.jcis.2016.02.043] [PMID: 26939078]
[83]
Vasimalai, N.; Abraham John, S. Biopolymer capped silver nanoparticles as fluorophore for ultrasensitive and selective determination of malathion. Talanta, 2013, 115, 24-31.
[http://dx.doi.org/10.1016/j.talanta.2013.04.033] [PMID: 24054557]
[84]
Martins, A.F.; Follmann, H.D.M.; Monteiro, J.P.; Bonafé, E.G.; Nocchi, S.; Silva, C.T.P.; Nakamura, C.V.; Girotto, E.M.; Rubira, A.F.; Muniz, E.C. Polyelectrolyte complex containing silver nanoparticles with antitumor property on Caco-2 colon cancer cells. Int. J. Biol. Macromol., 2015, 79, 748-755.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.036] [PMID: 26051341]
[85]
Muhammad, Z.; Raza, A.; Ghafoor, S.; Naeem, A.; Naz, S.S.; Riaz, S.; Ahmed, W.; Rana, N.F. PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur. J. Pharm. Sci., 2016, 91, 251-255.
[http://dx.doi.org/10.1016/j.ejps.2016.04.029] [PMID: 27132812]
[86]
Bastos, V.; Ferreira de Oliveira, J.M.P.; Brown, D.; Jonhston, H.; Malheiro, E.; Daniel-da-Silva, A.L.; Duarte, I.F.; Santos, C.; Oliveira, H. The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. Toxicol. Lett., 2016, 249, 29-41.
[http://dx.doi.org/10.1016/j.toxlet.2016.03.005] [PMID: 27021274]
[87]
Arora, S.; Tyagi, N.; Bhardwaj, A.; Rusu, L.; Palanki, R.; Vig, K.; Singh, S.R.; Singh, A.P.; Palanki, S.; Miller, M.E.; Carter, J.E.; Singh, S. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: Potential for prevention of skin carcinogenesis. Nanomedicine (Lond.), 2015, 11(5), 1265-1275.
[http://dx.doi.org/10.1016/j.nano.2015.02.024] [PMID: 25804413]
[88]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), E1534
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[89]
Nallathamby, P.D.; Xu, X-H.N. Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells. Nanoscale, 2010, 2(6), 942-952.
[http://dx.doi.org/10.1039/c0nr00080a] [PMID: 20648292]
[90]
Soumya, R.S.; Hela, P.G. Nano Silver Based Targeted Drug Delivery For Treatment Of Cancer. Der Pharmacia Lettre, 2013, 5(4), 189-197.
[91]
Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.D.; Kalaichelvan, P.T. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Rep. (Amst.), 2014, 4(1), 42-49.
[http://dx.doi.org/10.1016/j.btre.2014.08.002] [PMID: 28626661]
[92]
Meenatchi Ammal, R.; Vijistella Bai, G. Green synthesis of silver nanostructures against human cancer cell lines and certain pathogens. Int. J. Pharm. Chem. Biol. Sci., 2014, 4(1), 101-111.
[93]
Krishnasamy, L.; Ponmurugan, P.; Jayanthi, K.; Magesh, V. Cytotoxic, apoptotic efficacy of silver nanoparticles synthesized from Indigofera aspalathoids. Int. J. Pharm. Pharm. Sci., 2014, 6(8), 245-248.
[94]
Guo, D.; Dou, D.; Ge, L.; Huang, Z.; Wang, L.; Gu, N. A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids Surf. B Biointerfaces, 2015, 134, 229-234.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.070] [PMID: 26208293]
[95]
Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P.R.; Nayak, B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci., 2015, 457, 329-338.
[http://dx.doi.org/10.1016/j.jcis.2015.07.012] [PMID: 26196716]
[96]
Igaz, N.; Kovács, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; Kiricsi, M. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles. Colloids Surf. B Biointerfaces, 2016, 146, 670-677.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.004] [PMID: 27434153]
[97]
Jang, S.J.; Yang, I.J.; Tettey, C.O.; Kim, K.M.; Shin, H.M. In vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mater. Sci. Eng. C, 2016, 68, 430-435.
[http://dx.doi.org/10.1016/j.msec.2016.03.101] [PMID: 27524038]
[98]
Kumar, B.; Smita, K.; Seqqat, R.; Benalcazar, K.; Grijalva, M.; Cumbal, L. In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application. J. Photochem. Photobiol. B, 2016, 159, 8-13.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.011] [PMID: 27010841]
[99]
Husseiny, S.M.; Salah, T.A.; Anter, H.A. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ. J. Basic Appl. Sci., 2015, 4(3), 225-231.
[100]
Sriranjani, R.; Srinithya, B.; Vellingiri, V.; Brindha, P.; Anthony, S.P.; Sivasubramanian, A.; Muthuraman, M.S. silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J. Mol. Liq., 2016, 220, 926-930.
[http://dx.doi.org/10.1016/j.molliq.2016.05.042]
[101]
Rajkuberan, C.; Prabukumar, S.; Sathishkumar, G.; Wilson, A.; Ravindran, K.; Sivaramakrishnan, S. Facile synthesis of silver nanoparticles using Euphorbia antiquorum L. latex extract and evaluation of their biomedical perspectives as anticancer agents. J. Saudi Chem. Soc., 2017, 21(8), 911-919.
[http://dx.doi.org/10.1016/j.jscs.2016.01.002]
[102]
Huy, T.Q.; Hien Thanh, N.T.; Thuy, N.T.; Chung, P.V.; Hung, P.N.; Le, A.T.; Hong Hanh, N.T. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus. J. Virol. Methods, 2017, 241, 52-57.
[http://dx.doi.org/10.1016/j.jviromet.2016.12.015] [PMID: 28040515]
[103]
Sarkar, M.K.; Vadivel, V.; Charan Raja, M.R.; Mahapatra, S.K. Potential anti-proliferative activity of AgNPs synthesized using M. longifolia in 4T1 cell line through ROS generation and cell membrane damage. J. Photochem. Photobiol. B, 2018, 186, 160-168.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.07.014] [PMID: 30064062]
[104]
Kanipandian, N.; Li, D.; Kannan, S. Induction of intrinsic apoptotic signaling pathway in A549 lung cancer cells using silver nanoparticles from Gossypium hirsutum and evaluation of in vivo toxicity. Biotechnol. Rep. (Amst.), 2019, 23, e00339
[http://dx.doi.org/10.1016/j.btre.2019.e00339]
[105]
Chan, H-K. Nanodrug particles and nanoformulations for drug delivery. Adv. Drug Deliv. Rev., 2011, 63(6), 405.
[http://dx.doi.org/10.1016/j.addr.2011.05.006] [PMID: 21601602]
[106]
Sironmani, A.; Daniel, K. Silver nanoparticles – universal multifunctional nanoparticles for bio sensing, imaging for diagnostics and targeted drug delivery for therapeutic applications. In: Drug Discovery and Development - Present and Future, Kapetanovi ć;; InTech,. , 2012; pp. 463-488.
[107]
[108]
Vaidyanathan, R.; Kalishwaralal, K.; Gopalram, S.; Gurunathan, S. Nanosilver--the burgeoning therapeutic molecule and its green synthesis. Biotechnol. Adv., 2009, 27(6), 924-937.
[http://dx.doi.org/10.1016/j.biotechadv.2009.08.001] [PMID: 19686832]
[109]
Longadge, N.K.; Rahatgaonkar, A.M. synthesis and evaluation of pegylated amino pyrimidines coated on gold and silver nanoparticles as drug delivery system for anticancer activity. J. Chem. Pharm. Res., 2016, 8(3), 669-685.
[110]
Mahmood, M.; Casciano, D.A.; Mocan, T.; Iancu, C.; Xu, Y.; Mocan, L.; Iancu, D.T.; Dervishi, E.; Li, Z.; Abdalmuhsen, M.; Biris, A.R.; Ali, N.; Howard, P.; Biris, A.S. Cytotoxicity and biological effects of functional nanomaterials delivered to various cell lines. J. Appl. Toxicol., 2010, 30(1), 74-83.
[http://dx.doi.org/10.1002/jat.1475] [PMID: 19760634]
[111]
Zhang, Z.; Liu, C.; Bai, J.; Wu, C.; Xiao, Y.; Li, Y.; Zheng, J.; Yang, R.; Tan, W. Silver nanoparticle gated, mesoporous silica coated gold nanorods (AuNR@MS@AgNPs): low premature release and multifunctional cancer theranostic platform. ACS Appl. Mater. Interfaces, 2015, 7(11), 6211-6219.
[http://dx.doi.org/10.1021/acsami.5b00368] [PMID: 25707533]
[112]
Appadurai, P.; Rathinasamy, K. Plumbagin-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities. IET Nanobiotechnol., 2015, 9(5), 264-272.
[http://dx.doi.org/10.1049/iet-nbt.2015.0008] [PMID: 26435279]
[113]
Sadat Shandiz, S.A.; Shafiee Ardestani, M.; Shahbazzadeh, D.; Assadi, A.; Ahangari Cohan, R.; Asgary, V.; Salehi, S. Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. Artif. Cells Nanomed. Biotechnol., 2017, 45(6), 1-10.
[http://dx.doi.org/10.1080/21691401.2016.1202257] [PMID: 27362495]
[114]
Yeasmin, S.; Datta, H.K.; Chaudhuri, S.; Malik, D.; Bandyopadhyay, A. In vitro anti-cancer activity of shape controlled Silver Nanoparticles (AgNPs) in various organ specific cell lines. J. Mol. Liq., 2017, 242, 757-766.
[http://dx.doi.org/10.1016/j.molliq.2017.06.047]
[115]
Zhang, X.; Xiao, C. Biofabrication of silver nanoparticles and their combined effect with low intensity ultrasound for treatment of lung cancer. J. Photochem. Photobiol. B, 2018, 181(181), 122-126.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.03.004] [PMID: 29550670]
[116]
Khan, A.U.; Yuan, Q.; Khan, Z.U.H.; Ahmad, A.; Khan, F.U.; Tahir, K.; Shakeel, M.; Ullah, S. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J. Photochem. Photobiol. B, 2018, 183, 367-373.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.007] [PMID: 29763759]
[117]
Suganya, M.; Gnanamangai, B.M.; Govindasamy, C.; Elsadek, M.F.; Pugazhendhi, A.; Chinnadurai, V.; Selvaraj, A.; Ravindran, B.; Chang, S.W.; Ponmurugan, P. Mitochondrial dysfunction mediated apoptosis of HT-29 cells through CS-PAC-AgNPs and investigation of genotoxic effects in zebra (Danio rerio) fish model for drug delivery. Saudi J. Biol. Sci., 2019, 26(4), 767-776.
[http://dx.doi.org/10.1016/j.sjbs.2019.03.007] [PMID: 31049002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy