Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Molecular Docking Supplements an In vitro Determination of the Leading CYP Isoform for Arylpiperazine Derivatives

Author(s): Szymon Ulenberg, Tomasz Bączek*, Joanna Zieliñska, Mariusz Belka, Marek Król and Franciszek Herold

Volume 22, Issue 6, 2019

Page: [370 - 378] Pages: 9

DOI: 10.2174/1386207322666190705143322

Price: $65

conference banner
Abstract

Background: Molecular docking has often been used before to calculate in silico affinity of drugs towards their molecular target, but not to estimate leading CYP isoform responsible for metabolism of studied compounds.

Objective: The aim of this study is to present molecular docking as a valid alternative for costly in vitro studies resulting in estimation of leading CYP isoform.

Methods: In vitro part was based on incubations of studied compounds with isolated CYP3A4 isoform followed by LC-MS analysis. The in silico stage consisted of docking three-dimensional models of the studied compounds with a three-dimensional model of the leading metabolizing isoform (CYP3A4), which was designated during the in vitro part of the study. XenoSite P450 metabolism prediction was also used to predict sites of metabolism and calculate probability values.

Results: The calculated affinities showed a clear similarity when the in vitro results were compared with the calculated in silico affinity values. XenoSite CYP3A4 metabolism probability values also confirm significant participation of CYP3A4 in metabolism of studied compounds.

Conclusion: Both molecular docking and XenoSite P450 metabolism prediction provide data that stands in agreement with in vitro studies, granting a more detailed spectrum on predicting CYP3A4 metabolism, and presenting molecular docking as a promising tool to cut costs and increase effectiveness in early drug development stages.

Keywords: Computer-aided drug design, molecular docking, drug-drug interactions, arylpiperazine, depression, cytochrome P450, isoform.

[1]
World Health Organization. Depression: Fact sheet, http://www.who.int/mediacentre/factsheets/fs369/en/ (accessed Jul 6, 2018)
[2]
Preskorn, S.H.; Ross, R.; Stanga, C.Y. Selective Serotonin Reuptake Inhibitors. In: Antidepressants: Past, Present, and Future,; Preskorn, S.H., Ross, R., Stanga, C.Y., Eds., Springer Nature: Switzerland AG,. , 2004; pp. 241-262.
[http://dx.doi.org/10.1007/978-3-642-18500-7_9]
[3]
Fournier, J.C.; DeRubeis, R.J.; Hollon, S.D.; Dimidjian, S.; Amsterdam, J.D.; Shelton, R.C.; Fawcett, J. Antidepressant drug effects and depression severity: A patient-level meta-analysis. JAMA, 2010, 303(1), 47-53.
[http://dx.doi.org/10.1001/jama.2009.1943] [PMID: 20051569]
[4]
Pies, R. Antidepressants work, sort of--our system of care does not. J. Clin. Psychopharmacol., 2010, 30(2), 101-104.
[http://dx.doi.org/10.1097/JCP.0b013e3181d52dea] [PMID: 20520282]
[5]
Artigas, F.; Perez, V.; Alvarez, E. Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch. Gen. Psychiatry, 1994, 51(3), 248-251.
[http://dx.doi.org/10.1001/archpsyc.1994.03950030084009] [PMID: 8122960]
[6]
Hogg, S.; Dalvi, A. Acceleration of onset of action in schedule-induced polydipsia: Combinations of SSRI and 5-HT1A and 5-HT1B receptor antagonists. Pharmacol. Biochem. Behav., 2004, 77(1), 69-75.
[http://dx.doi.org/10.1016/j.pbb.2003.09.020] [PMID: 14724043]
[7]
Chodkowski, A.; Wróbel, M.Z.; Turło, J.; Kleps, J.; Siwek, A.; Nowak, G.; Belka, M.; Bączek, T.; Mazurek, A.P.; Herold, F. Novel 4-aryl-pyrido[1,2-c]pyrimidines with dual SSRI and 5-HT1A activity. Part 4. Eur. J. Med. Chem., 2015, 90, 21-32.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.069] [PMID: 25461308]
[8]
Hajjar, E.R.; Cafiero, A.C.; Hanlon, J.T. Polypharmacy in elderly patients. Am. J. Geriatr. Pharmacother., 2007, 5(4), 345-351.
[http://dx.doi.org/10.1016/j.amjopharm.2007.12.002] [PMID: 18179993]
[9]
Johnell, K.; Klarin, I. The relationship between number of drugs and potential drug-drug interactions in the elderly: a study of over 600,000 elderly patients from the Swedish Prescribed Drug Register. Drug Saf., 2007, 30(10), 911-918.
[http://dx.doi.org/10.2165/00002018-200730100-00009] [PMID: 17867728]
[10]
Foti, R.S.; Rock, D.A.; Wienkers, L.C.; Wahlstrom, J.L. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab. Dispos., 2010, 38(6), 981-987.
[http://dx.doi.org/10.1124/dmd.110.032094] [PMID: 20203109]
[11]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[12]
Ince, I.; Knibbe, C.A.J.; Danhof, M.; de Wildt, S.N. Developmental changes in the expression and function of cytochrome P450 3A isoforms: evidence from in vitro and in vivo investigations. Clin. Pharmacokinet., 2013, 52(5), 333-345.
[http://dx.doi.org/10.1007/s40262-013-0041-1] [PMID: 23463352]
[13]
Zhou, S.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab., 2008, 9(4), 310-322.
[http://dx.doi.org/10.2174/138920008784220664] [PMID: 18473749]
[14]
Kenworthy, K.E.; Bloomer, J.C.; Clarke, S.E.; Houston, J.B. CYP3A4 drug interactions: Correlation of 10 in vitro probe substrates. Br. J. Clin. Pharmacol., 1999, 48(5), 716-727.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00073.x] [PMID: 10594474]
[15]
Rendic, S.; Di Carlo, F.J. Human cytochrome P450 enzymes: A status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev., 1997, 29(1-2), 413-580.
[http://dx.doi.org/10.3109/03602539709037591] [PMID: 9187528]
[16]
Mullard, A. 2016 FDA drug approvals. Nat. Rev. Drug Discov., 2017, 16(2), 73-76.
[http://dx.doi.org/10.1038/nrd.2017.14] [PMID: 28148938]
[17]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[18]
Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins, 2002, 47(4), 409-443.
[http://dx.doi.org/10.1002/prot.10115] [PMID: 12001221]
[19]
Coupez, B.; Lewis, R.A. Docking and scoring--theoretically easy, practically impossible? Curr. Med. Chem., 2006, 13(25), 2995-3003.
[http://dx.doi.org/10.2174/092986706778521797] [PMID: 17073642]
[20]
Kontoyianni, M.; Madhav, P.; Suchanek, E.; Seibel, W. Theoretical and practical considerations in virtual screening: A beaten field? Curr. Med. Chem., 2008, 15(2), 107-116.
[http://dx.doi.org/10.2174/092986708783330566] [PMID: 18220766]
[21]
Brooijmans, N.; Kuntz, I.D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., 2003, 32(1), 335-373.
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.142532] [PMID: 12574069]
[22]
ten Brink, T.; Exner, T.E. Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results. J. Chem. Inf. Model., 2009, 49(6), 1535-1546.
[http://dx.doi.org/10.1021/ci800420z] [PMID: 19453150]
[23]
Cross, J.B.; Thompson, D.C.; Rai, B.K.; Baber, J.C.; Fan, K.Y.; Hu, Y.; Humblet, C. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J. Chem. Inf. Model., 2009, 49(6), 1455-1474.
[http://dx.doi.org/10.1021/ci900056c] [PMID: 19476350]
[24]
Li, X.; Li, Y.; Cheng, T.; Liu, Z.; Wang, R. Evaluation of the performance of four molecular docking programs on a diverse set of protein-ligand complexes. J. Comput. Chem., 2010, 31(11), 2109-2125.
[http://dx.doi.org/10.1002/jcc.21498] [PMID: 20127741]
[25]
Plewczynski, D.; Łaźniewski, M.; Augustyniak, R.; Ginalski, K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem., 2011, 32(4), 742-755.
[http://dx.doi.org/10.1002/jcc.21643] [PMID: 20812323]
[26]
Herold, F.; Król, M.; Kleps, J.; Nowak, G. Synthesis of new hexahydro- and octahydropyrido[1,2-c]pyrimidine derivatives with an arylpiperazine moiety as ligands for 5-HT1A and 5-HT2A receptors. Part 4. Eur. J. Med. Chem., 2006, 41(1), 125-134.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.003] [PMID: 16263195]
[27]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A. Gaussian 03. Revision C. Gaussian Inc.: Wallingford CT, 2004.
[28]
Ekroos, M.; Sjögren, T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. USA, 2006, 103(37), 13682-13687.
[http://dx.doi.org/10.1073/pnas.0603236103] [PMID: 16954191]
[29]
Webb, B.; Sali, A. comparative protein structure modeling using modeller. Curr. Protoc. Bioinforma, 2014. 2014, 5.6.1-5.6.32.
[http://dx.doi.org/10.1002/0471250953.bi0506s47]
[30]
Huang, J.; MacKerell, A.D., Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 2013, 34(25), 2135-2145.
[http://dx.doi.org/10.1002/jcc.23354] [PMID: 23832629]
[31]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[32]
Van Gunsteren, W.F.; Berendsen, H.J.C. A leap-frog algorithm for stochastic dynamics. Mol. Simul., 1988, 1(3), 173-185.
[http://dx.doi.org/10.1080/08927028808080941]
[33]
Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[34]
Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput., 2008, 4(1), 116-122.
[http://dx.doi.org/10.1021/ct700200b] [PMID: 26619985]
[35]
Miyamoto, S.; Kollman, P.A. Settle: An analytical version of the shake and RATTLE algorithm for rigid water models. J. Comput. Chem., 1992, 13(8), 952-962.
[http://dx.doi.org/10.1002/jcc.540130805]
[36]
Darden, T.; York, D.; Pedersen, L. Particle mesh ewald: An N ⋅log(N) method for ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[37]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[38]
Zaretzki, J.; Matlock, M.; Swamidass, S.J. XenoSite: Accurately predicting CYP-mediated sites of metabolism with neural networks. J. Chem. Inf. Model., 2013, 53(12), 3373-3383.
[http://dx.doi.org/10.1021/ci400518g] [PMID: 24224933]
[39]
Matlock, M.K.; Hughes, T.B.; Swamidass, S.J. XenoSite server: A web-available site of metabolism prediction tool. Bioinformatics, 2015, 31(7), 1136-1137.
[http://dx.doi.org/10.1093/bioinformatics/btu761] [PMID: 25411327]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy