Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Overview of Molecular Mechanisms Involved in Herbal Compounds for Inhibiting Osteoclastogenesis from Macrophage Linage RAW264.7

Author(s): Gaole He and Rui Ma*

Volume 15, Issue 7, 2020

Page: [570 - 578] Pages: 9

DOI: 10.2174/1574888X14666190703144917

Price: $65

Abstract

Differentiation from RAW264.7 cells to osteoclasts rely on many signaling pathways, such as NF-κB, MAPK, Akt and others. However, the specific underlying mechanisms are not clear. Recently, much works have focused on the inhibitory effects of plant derived compounds in the differentiation from RAW264.7 to osteoclasts. However, the specific mechanisms remain unclear. In this paper, we summarize a lot of plant derived compounds which exert blocking effect on the progression of differentiation via signaling pathways.

Keywords: Plant derived compounds, osteoclasts, RAW264.7, signaling pathways, bone homeostasis, macrophage.

[1]
Deepak V, Kasonga A, Kruger MC, Coetzee M. Carvacrol Inhibits Osteoclastogenesis and Negatively Regulates the Survival of Mature Osteoclasts. Biol Pharm Bull 2016; 39(7): 1150-8.
[http://dx.doi.org/10.1248/bpb.b16-00117] [PMID: 27170515]
[2]
Kobayashi Y, Uehara S, Koide M. Regulations of osteoclast formation and function by Wnt signals. Clin Calcium 2019; 29(3): 309-15.
[PMID: 30814375]
[3]
Song C, Yang X, Lei Y, et al. Evaluation of efficacy on RANKL induced osteoclast from RAW264.7 cells. J Cell Physiol 2018.
[PMID: 30515780]
[4]
Collin-Osdoby P, Yu X, Zheng H, Osdoby P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Med 2003; 80: 153-66.
[http://dx.doi.org/10.1385/1-59259-366-6:153] [PMID: 12728717]
[5]
Collin-Osdoby P, Osdoby P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Biol 2012; 816: 187-202.
[http://dx.doi.org/10.1007/978-1-61779-415-5_13] [PMID: 22130930]
[6]
Kamio N, Kawato T, Tanabe N, et al. Vaspin attenuates RANKL-induced osteoclast formation in RAW264.7 cells. Connect Tissue Res 2013; 54(2): 147-52.
[http://dx.doi.org/10.3109/03008207.2012.761978] [PMID: 23323745]
[7]
Kats A, Norgård M, Wondimu Z, et al. Aminothiazoles inhibit RANKL- and LPS-mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells. J Cell Mol Med 2016; 20(6): 1128-38.
[http://dx.doi.org/10.1111/jcmm.12814] [PMID: 26987561]
[8]
Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007; 7(4): 292-304.
[http://dx.doi.org/10.1038/nri2062] [PMID: 17380158]
[9]
Wang YM, Lu TL, Hsu PN, et al. Ribosome inactivating protein B-chain induces osteoclast differentiation from monocyte/macrophage lineage precursor cells. Bone 2011; 48(6): 1336-45.
[http://dx.doi.org/10.1016/j.bone.2011.02.018] [PMID: 21356340]
[10]
Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 2013; 92(10): 860-7.
[http://dx.doi.org/10.1177/0022034513500306] [PMID: 23906603]
[11]
Han J, Gao W, Su D, Liu Y. Gypenoside inhibits RANKL-induced osteoclastogenesis by regulating NF-κB, AKT, and MAPK signaling pathways. J Cell Biochem 2018; 119(9): 7310-8.
[http://dx.doi.org/10.1002/jcb.27028] [PMID: 29797602]
[12]
Kim DW, Shin MJ, Choi YJ, et al. Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-κB pathways. BMB Rep 2018; 51(12): 654-9.
[http://dx.doi.org/10.5483/BMBRep.2018.51.12.248] [PMID: 30545441]
[13]
Zhao Y, Li J, Liu Y, Yu KQ, Zhang J, Chen XG. Gu Ling Pian, a traditional Chinese medicine, regulates function and OPG/RANKL synthesis of osteoblasts via the p38 MAPK pathway. J Pharm Pharmacol 2007; 59(8): 1167-73.
[http://dx.doi.org/10.1211/jpp.59.8.0016] [PMID: 17725861]
[14]
Horcajada MN, Offord E. Naturally plant-derived compounds: role in bone anabolism. Curr Mol Pharmacol 2012; 5(2): 205-18.
[http://dx.doi.org/10.2174/1874467211205020205] [PMID: 21787284]
[15]
Mbese Z, Aderibigbe BA. Biological Efficacy of Carvacrol Analogues. Recent Pat Antiinfect Drug Discov 2018; 13(3): 207-16.
[http://dx.doi.org/10.2174/1574891X14666181205111821] [PMID: 30516115]
[16]
Silva ER, de Carvalho FO, Teixeira LGB, et al. Pharmacological Effects of Carvacrol in In vitro Studies: A Review. Curr Pharm Des 2018; 24(29): 3454-65.
[http://dx.doi.org/10.2174/1381612824666181003123400] [PMID: 30280662]
[17]
Sharifi-Rad M, Varoni EM, Iriti M, et al. Carvacrol and human health: A comprehensive review. Phytother Res 2018; 32(9): 1675-87.
[http://dx.doi.org/10.1002/ptr.6103] [PMID: 29744941]
[18]
Li J, Li Y, Peng X, Li B, Yuan X, Chen Y. Emodin attenuates titanium particle-induced osteolysis and RANKL-mediated osteoclastogenesis through the suppression of IKK phosphorylation. Mol Immunol 2018; 96: 8-18.
[http://dx.doi.org/10.1016/j.molimm.2018.02.008] [PMID: 29455094]
[19]
Deng P, Zhou C, Alvarez R, Hong C, Wang CY. Inhibition of IKK/NF-κB Signaling Enhances Differentiation of Mesenchymal Stromal Cells from Human Embryonic Stem Cells. Stem Cell Reports 2019; 12(1): 180-1.
[http://dx.doi.org/10.1016/j.stemcr.2018.11.017] [PMID: 30629938]
[20]
Sadegh M, Sakhaie MH. Carvacrol mitigates proconvulsive effects of lipopolysaccharide, possibly through the hippocampal cyclooxygenase-2 inhibition. Metab Brain Dis 2018; 33(6): 2045-50.
[http://dx.doi.org/10.1007/s11011-018-0314-3] [PMID: 30229386]
[21]
Harlev E, Nevo E, Lansky EP, Ofir R, Bishayee A. Anticancer potential of aloes: antioxidant, antiproliferative, and immunostimulatory attributes. Planta Med 2012; 78(9): 843-52.
[http://dx.doi.org/10.1055/s-0031-1298453] [PMID: 22516934]
[22]
Park MY, Kwon HJ, Sung MK. Dietary aloin, aloesin, or aloe-gel exerts anti-inflammatory activity in a rat colitis model. Life Sci 2011; 88(11-12): 486-92.
[http://dx.doi.org/10.1016/j.lfs.2011.01.010] [PMID: 21277867]
[23]
Srivastava A, Nigam AK, Mittal S, Mittal AK. Role of aloin in the modulation of certain immune parameters in skin mucus of an Indian major carp, Labeo rohita. Fish Shellfish Immunol 2018; 73: 252-61.
[http://dx.doi.org/10.1016/j.fsi.2017.12.014] [PMID: 29242133]
[24]
Pengjam Y, Madhyastha H, Madhyastha R, Yamaguchi Y, Nakajima Y, Maruyama M. NF-κB pathway inhibition by anthrocyclic glycoside aloin is key event in preventing osteoclastogenesis in RAW264.7 cells. Phytomedicine 2016; 23(4): 417-28.
[http://dx.doi.org/10.1016/j.phymed.2016.01.006] [PMID: 27002412]
[25]
Bonesi M, et al. The Role of Anthocyanins in Drug Discovery: Recent Developments Curr Drug Discov Technol 2019.
[26]
Naseri R, Farzaei F, Haratipour P, et al. Anthocyanins in the Management of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Pharmacol 2018; 9: 1310.
[http://dx.doi.org/10.3389/fphar.2018.01310] [PMID: 30564116]
[27]
Estévez L, Mosquera RA. Molecular structure and antioxidant properties of delphinidin. J Phys Chem A 2008; 112(42): 10614-23.
[http://dx.doi.org/10.1021/jp8043237] [PMID: 18821739]
[28]
Bertuglia S, Malandrino S, Colantuoni A. Effects of the natural flavonoid delphinidin on diabetic microangiopathy. Arzneimittelforschung 1995; 45(4): 481-5.
[PMID: 7779146]
[29]
Moriwaki S, Suzuki K, Muramatsu M, et al. Delphinidin, one of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One 2014; 9(5)e97177
[http://dx.doi.org/10.1371/journal.pone.0097177] [PMID: 24824988]
[30]
Rajan VK, Hasna CK, Muraleedharan K. The natural food colorant Peonidin from cranberries as a potential radical scavenger - A DFT based mechanistic analysis. Food Chem 2018; 262: 184-90.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.074] [PMID: 29751907]
[31]
Mackert JD, McIntosh MK. Combination of the anthocyanidins malvidin and peonidin attenuates lipopolysaccharide-mediated inflammatory gene expression in primary human adipocytes. Nutr Res 2016; 36(12): 1353-60.
[http://dx.doi.org/10.1016/j.nutres.2016.11.003] [PMID: 27889107]
[32]
Hou DX, Kai K, Li JJ, et al. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms. Carcinogenesis 2004; 25(1): 29-36.
[http://dx.doi.org/10.1093/carcin/bgg184] [PMID: 14514663]
[33]
Ho ML, Chen PN, Chu SC, et al. Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutr Cancer 2010; 62(4): 505-16.
[http://dx.doi.org/10.1080/01635580903441261] [PMID: 20432172]
[34]
Tong P, Wu C, Wang X, et al. Development and assessment of a complete-detoxication strategy for Fuzi (lateral root of Aconitum carmichaeli) and its application in rheumatoid arthritis therapy. J Ethnopharmacol 2013; 146(2): 562-71.
[http://dx.doi.org/10.1016/j.jep.2013.01.025] [PMID: 23376046]
[35]
Zhang H, Sun S, Zhang W, et al. Biological activities and pharmacokinetics of aconitine, benzoylaconine, and aconine after oral administration in rats. Drug Test Anal 2016; 8(8): 839-46.
[http://dx.doi.org/10.1002/dta.1858] [PMID: 26360128]
[36]
Zeng XZ, He LG, Wang S, et al. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin 2016; 37(2): 255-63.
[http://dx.doi.org/10.1038/aps.2015.85] [PMID: 26592521]
[37]
Zhang C, Dou CE, Xu J, Dong S. DC-STAMP, the key fusion-mediating molecule in osteoclastogenesis. J Cell Physiol 2014; 229(10): 1330-5.
[http://dx.doi.org/10.1002/jcp.24553] [PMID: 24420845]
[38]
Wisitrasameewong W, Kajiya M, Movila A, et al. DC-STAMP Is an Osteoclast Fusogen Engaged in Periodontal Bone Resorption. J Dent Res 2017; 96(6): 685-93.
[http://dx.doi.org/10.1177/0022034517690490] [PMID: 28199142]
[39]
Sun H, Ll LY, Zhou XM, Fu JX. [Effect of Curcumol on the Biological Behavior of Multiple Myeloma Cells Zhongguo Zhong Xi Yi Jie He Za Zhi 2016; 36(10): 1229-34.
[PMID: 30641012]
[40]
Yu C, Sun X, Niu Y. An investigation of the developmental neurotoxic potential of curcumol in PC12 cells. Toxicol Mech Methods 2016; 26(9): 635-43.
[http://dx.doi.org/10.1080/15376516.2016.1207735] [PMID: 27819177]
[41]
Yu M, Chen X, Lv C, et al. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway. Biochem Biophys Res Commun 2014; 447(2): 364-70.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.009] [PMID: 24732351]
[42]
Fang Z, He D, Yu B, et al. High-Throughput Study of the Effects of Celastrol on Activated Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis. Genes (Basel) 2017; 8(9)E221
[http://dx.doi.org/10.3390/genes8090221] [PMID: 28878153]
[43]
Xu LN, Zhao N, Chen JY, et al. Celastrol Inhibits the Growth of Ovarian Cancer Cells in vitro and in vivo. Front Oncol 2019; 9: 2.
[http://dx.doi.org/10.3389/fonc.2019.00002] [PMID: 30746340]
[44]
Gan K, Xu L, Feng X, et al. Celastrol attenuates bone erosion in collagen-Induced arthritis mice and inhibits osteoclast differentiation and function in RANKL-induced RAW264.7. Int Immunopharmacol 2015; 24(2): 239-46.
[http://dx.doi.org/10.1016/j.intimp.2014.12.012] [PMID: 25529994]
[45]
Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999; 58(11): 1685-93.
[http://dx.doi.org/10.1016/S0006-2952(99)00212-9] [PMID: 10571242]
[46]
Razgonova MP, Veselov VV, Zakharenko AM, et al. Panax ginseng components and the pathogenesis of Alzheimer’s disease. (Review). Mol Med Rep 2019; 19(4): 2975-98.
[http://dx.doi.org/10.3892/mmr.2019.9972] [PMID: 30816465]
[47]
Park S, Daily JW, Lee J. Can Topical Use of Ginseng or Ginsenosides Accelerate Wound Healing? J Med Food 2018; 21(11): 1075-6.
[http://dx.doi.org/10.1089/jmf.2018.29000.com] [PMID: 30311829]
[48]
Sun M, He M, Korthout H, et al. Characterization of ginsenoside extracts by delayed luminescence, high-performance liquid chromatography, and bioactivity tests. Photochem Photobiol Sci 2019; 18(5): 1138-46.
[http://dx.doi.org/10.1039/C8PP00533H] [PMID: 30768081]
[49]
Zhou P, Xie W, Sun Y, et al. Ginsenoside Rb1 and mitochondria: A short review of the literature. Mol Cell Probes 2019; 43: 1-5.
[http://dx.doi.org/10.1016/j.mcp.2018.12.001] [PMID: 30529056]
[50]
Ahmed T, Raza SH, Maryam A, et al. Ginsenoside Rb1 as a neuroprotective agent: A review. Brain Res Bull 2016; 125: 30-43.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.002] [PMID: 27060612]
[51]
Cheng B, Li J, Du J, Lv X, Weng L, Ling C. Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NF-κB and MAPKs pathways. Food Chem Toxicol 2012; 50(5): 1610-5.
[http://dx.doi.org/10.1016/j.fct.2012.02.019] [PMID: 22386813]
[52]
Lee DY, Lee MK, Kim GS, Noh HJ, Lee MH. Brazilin inhibits growth and induces apoptosis in human glioblastoma cells. Molecules 2013; 18(2): 2449-57.
[http://dx.doi.org/10.3390/molecules18022449] [PMID: 23429418]
[53]
Nirmal NP, Rajput MS, Prasad RG, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med 2015; 8(6): 421-30.
[http://dx.doi.org/10.1016/j.apjtm.2015.05.014] [PMID: 26194825]
[54]
Kim J, Lee HK, Chang TS, Kang KS, Hwang GS. Inhibitory effect of brazilin on osteoclast differentiation and its mechanism of action. Int Immunopharmacol 2015; 29(2): 628-34.
[http://dx.doi.org/10.1016/j.intimp.2015.09.018] [PMID: 26428849]
[55]
Wang P, Zhang J, Xiong X, et al. Icariin suppresses cell cycle transition and cell migration in ovarian cancer cells. Oncol Rep 2019; 41(4): 2321-8.
[http://dx.doi.org/10.3892/or.2019.6986] [PMID: 30720119]
[56]
Liu Y, Zuo H, Liu X, Xiong J, Pei X. The antiosteoporosis effect of icariin in ovariectomized rats: a systematic review and meta-analysis. Cell Mol Biol 2017; 63(11): 124-31.
[http://dx.doi.org/10.14715/cmb/2017.63.11.22] [PMID: 29208188]
[57]
Kim B, Lee KY, Park B. Icariin abrogates osteoclast formation through the regulation of the RANKL-mediated TRAF6/NF-κB/ERK signaling pathway in Raw264.7 cells. Phytomedicine 2018; 51: 181-90.
[http://dx.doi.org/10.1016/j.phymed.2018.06.020] [PMID: 30466615]
[58]
Gao X, Guo S, Zhang S, Liu A, Shi L, Zhang Y. Matrine attenuates endoplasmic reticulum stress and mitochondrion dysfunction in nonalcoholic fatty liver disease by regulating SERCA pathway. J Transl Med 2018; 16(1): 319.
[http://dx.doi.org/10.1186/s12967-018-1685-2] [PMID: 30458883]
[59]
Zhang RK, Wang C. [Effect of matrine on tumor growth and inflammatory factors and immune function in Wistar rat with breast cancer Zhongguo Ying Yong Sheng Li Xue Za Zhi 2018; 34(4): 375-8.
[PMID: 30788949]
[60]
Chen X, Zhi X, Pan P, et al. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis. FASEB J 2017; 31(11): 4855-65.
[http://dx.doi.org/10.1096/fj.201700316R] [PMID: 28739641]
[61]
Xin Z, Jin C, Chao L, et al. A Matrine Derivative M54 Suppresses Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss by Targeting Ribosomal Protein S5. Front Pharmacol 2018; 9: 22.
[http://dx.doi.org/10.3389/fphar.2018.00022] [PMID: 29441015]
[62]
Xu WH, Hu HG, Tian Y, et al. Bioactive compound reveals a novel function for ribosomal protein S5 in hepatic stellate cell activation and hepatic fibrosis. Hepatology 2014; 60(2): 648-60.
[http://dx.doi.org/10.1002/hep.27138] [PMID: 24668691]
[63]
Wang X, Li S, Ma J, et al. Effect of Gastrodin on Early Brain Injury and Neurological Outcome After Subarachnoid Hemorrhage in Rats. Neurosci Bull 2019; 35(3): 461-70.
[http://dx.doi.org/10.1007/s12264-018-00333-w] [PMID: 30673960]
[64]
Liu Y, Gao J, Peng M, et al. A Review on Central Nervous System Effects of Gastrodin. Front Pharmacol 2018; 9: 24.
[http://dx.doi.org/10.3389/fphar.2018.00024] [PMID: 29456504]
[65]
Huang Q, Shi J, Gao B, et al. Gastrodin: an ancient Chinese herbal medicine as a source for anti-osteoporosis agents via reducing reactive oxygen species. Bone 2015; 73: 132-44.
[http://dx.doi.org/10.1016/j.bone.2014.12.059] [PMID: 25554600]
[66]
Almatroudi A, Alsahli MA, Alrumaihi F, Allemailem KS, Rahmani AH. Ginger: A novel strategy to battle cancer through modulating cell signalling pathways. Curr Pharm Biotechnol 2019; 20(1): 5-16.
[http://dx.doi.org/10.2174/1389201020666190119142331] [PMID: 30659535]
[67]
Tóth B, Lantos T, Hegyi P, et al. Ginger (Zingiber officinale): An alternative for the prevention of postoperative nausea and vomiting. A meta-analysis. Phytomedicine 2018; 50: 8-18.
[http://dx.doi.org/10.1016/j.phymed.2018.09.007] [PMID: 30466995]
[68]
Ito S, Ohmi A, Sakamiya A, et al. Ginger hexane extract suppresses RANKL-induced osteoclast differentiation. Biosci Biotechnol Biochem 2016; 80(4): 779-85.
[http://dx.doi.org/10.1080/09168451.2015.1127133] [PMID: 26967638]
[69]
Li G, Sun P, Zhou Y, Zhao X, Chen F. Preventive effects of Dendrobium candidum Wall ex Lindl. on the formation of lung metastases in BALB/c mice injected with 26-M3.1 colon carcinoma cells. Oncol Lett 2014; 8(4): 1879-85.
[http://dx.doi.org/10.3892/ol.2014.2383] [PMID: 25202430]
[70]
Liang J, Wu Y, Yuan H, et al. Dendrobium officinale polysaccharides attenuate learning and memory disabilities via anti-oxidant and anti-inflammatory actions. Int J Biol Macromol 2019; 126: 414-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.230] [PMID: 30593810]
[71]
Yan L, Wang X, Liu H, et al. The Genome of Dendrobium officinale Illuminates the Biology of the Important Traditional Chinese Orchid Herb. Mol Plant 2015; 8(6): 922-34.
[http://dx.doi.org/10.1016/j.molp.2014.12.011] [PMID: 25825286]
[72]
Wang Q, Zi CT, Wang J, et al. Dendrobium officinale Orchid Extract Prevents Ovariectomy-Induced Osteoporosis in Vivo and Inhibits RANKL-Induced Osteoclast Differentiation in Vitro. Front Pharmacol 2018; 8: 966.
[http://dx.doi.org/10.3389/fphar.2017.00966] [PMID: 29379436]
[73]
Shen CL, Chyu MC, Yeh JK, et al. Green tea polyphenols and Tai Chi for bone health: designing a placebo-controlled randomized trial. BMC Musculoskelet Disord 2009; 10: 110.
[http://dx.doi.org/10.1186/1471-2474-10-110] [PMID: 19732445]
[74]
Nie XC, Dong DS, Bai Y, Xia P. Meta-analysis of black tea consumption and breast cancer risk: update 2013. Nutr Cancer 2014; 66(6): 1009-14.
[http://dx.doi.org/10.1080/01635581.2014.936947] [PMID: 25077380]
[75]
Haslam E. Thoughts on thearubigins. Phytochemistry 2003; 64(1): 61-73.
[http://dx.doi.org/10.1016/S0031-9422(03)00355-8] [PMID: 12946406]
[76]
Aneja R, Odoms K, Denenberg AG, Wong HR. Theaflavin, a black tea extract, is a novel anti-inflammatory compound. Crit Care Med 2004; 32(10): 2097-103.
[http://dx.doi.org/10.1097/01.CCM.0000142661.73633.15] [PMID: 15483420]
[77]
Liang Q, Lv M, Zhang X, et al. Effect of Black Tea Extract and Thearubigins on Osteoporosis in Rats and Osteoclast Formation in vitro. Front Physiol 2018; 9: 1225.
[http://dx.doi.org/10.3389/fphys.2018.01225] [PMID: 30233402]
[78]
Rosenthal PJ. Artesunate for the treatment of severe falciparum malaria. N Engl J Med 2008; 358(17): 1829-36.
[http://dx.doi.org/10.1056/NEJMct0709050] [PMID: 18434652]
[79]
Barradell LB, Fitton A. Artesunate. A review of its pharmacology and therapeutic efficacy in the treatment of malaria. Drugs 1995; 50(4): 714-41.
[http://dx.doi.org/10.2165/00003495-199550040-00009] [PMID: 8536555]
[80]
Zeng X, Zhang Y, Wang S, et al. Artesunate suppresses RANKL-induced osteoclastogenesis through inhibition of PLCγ1-Ca2+-NFATc1 signaling pathway and prevents ovariectomy-induced bone loss. Biochem Pharmacol 2017; 124: 57-68.
[http://dx.doi.org/10.1016/j.bcp.2016.10.007] [PMID: 27789216]
[81]
Tang W, Zuo JP. Immunosuppressant discovery from Tripterygium wilfordii Hook f: the novel triptolide analog (5R)-5-hydroxytriptolide (LLDT-8). Acta Pharmacol Sin 2012; 33(9): 1112-8.
[http://dx.doi.org/10.1038/aps.2012.108] [PMID: 22922344]
[82]
Wang L, Xu Y, Fu L, Li Y, Lou L. (5R)-5-hydroxytriptolide (LLDT-8), a novel immunosuppressant in clinical trials, exhibits potent antitumor activity via transcription inhibition. Cancer Lett 2012; 324(1): 75-82.
[http://dx.doi.org/10.1016/j.canlet.2012.05.004] [PMID: 22579805]
[83]
Shen Y, Jiang T, Wang R, et al. (5R)-5-Hydroxytriptolide (LLDT-8) inhibits osteoclastogenesis via RANKL/RANK/OPG signaling pathway. BMC Complement Altern Med 2015; 15: 77.
[http://dx.doi.org/10.1186/s12906-015-0566-y] [PMID: 25887296]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy