Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Detection of Glucose in Human Serum Based on Silicon Dot Probe

Author(s): Kuan Luo and Xinyu Jiang*

Volume 16, Issue 6, 2020

Page: [744 - 752] Pages: 9

DOI: 10.2174/1573411015666190702152331

Price: $65

Abstract

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability.

Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs.

Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability.

Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.

Keywords: Fluorescent probe, glucose detection, glucose oxidase, inner filter effect, manganese dioxide, silicon nanoparticles.

Graphical Abstract
[1]
Zimmet, P.; Alberti, K.G.M.M.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature, 2001, 414(6865), 782-787.
[http://dx.doi.org/10.1038/414782a] [PMID: 11742409]
[2]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[3]
Ko, Y.S.; Kwon, Y.U. Mesoporous zirconia thin films with three-dimensional pore structures and their application to electrochemical glucose detection. ACS Appl. Mater. Interfaces, 2013, 5(9), 3599-3606.
[http://dx.doi.org/10.1021/am303248p] [PMID: 23566226]
[4]
Su, S.; Sun, H.; Xu, F.; Yuwen, L.; Fan, C.; Wang, L. Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Mikrochim. Acta,, 2014, 181,, 1497-1503..
[http://dx.doi.org/10.1007/s00604-014-1178-9]
[5]
Noiphung, J.; Songjaroen, T.; Dungchai, W.; Henry, C.S.; Chailapakul, O.; Laiwattanapaisal, W. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal. Chim. Acta, 2013, 788, 39-45.
[http://dx.doi.org/10.1016/j.aca.2013.06.021] [PMID: 23845479]
[6]
Lu, W.; Sun, Y.; Dai, H.; Ni, P.; Jiang, S.; Wang, Y. Direct growth of pod-like Cu2O nanowire arrays on copper foam: Highly sensitive and efficient nonenzymatic glucose and H2O2 biosensor. Sensor Actuat. Biol.Chem., 2016, 231, 860-866.
[7]
Jia, X.; Hu, G.; Nitze, F.; Barzegar, H.R.; Sharifi, T.; Tai, C.W.; Wågberg, T. Synthesis of palladium/helical carbon nanofiber hybrid nanostructures and their application for hydrogen peroxide and glucose detection. ACS Appl. Mater. Interfaces, 2013, 5(22), 12017-12022.
[http://dx.doi.org/10.1021/am4037383] [PMID: 24180258]
[8]
Gao, Z.F.; Chen, D.M.; Lei, J.L.; Luo, H.Q.; Li, N.B. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe. Anal. Chim. Acta, 2015, 897, 10-16.
[http://dx.doi.org/10.1016/j.aca.2015.09.045] [PMID: 26515000]
[9]
Wang, G-L.; Xu, X.; Wu, X.; Cao, G.; Dong, Y.; Li, Z. Visiblelight-stimulated enzymelike activity of graphene oxide and its application for facile glucose sensing. J. Phys. Chem. C,, 2014, 118,, 28109-28117..
[http://dx.doi.org/10.1021/jp5088543]
[10]
Su, L.; Feng, J.; Zhou, X.; Ren, C.; Li, H.; Chen, X. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem., 2012, 84(13), 5753-5758.
[http://dx.doi.org/10.1021/ac300939z] [PMID: 22702236]
[11]
Lu, C.; Liu, X.; Li, Y.; Yu, F.; Tang, L.; Hu, Y.; Ying, Y. Multifunctional Janus hematite-silica nanoparticles: Mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl. Mater. Interfaces, 2015, 7(28), 15395-15402.
[http://dx.doi.org/10.1021/acsami.5b03423] [PMID: 26110779]
[12]
Lin, L.; Song, X.; Chen, Y.; Rong, M.; Zhao, T.; Wang, Y.; Jiang, Y.; Chen, X. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal. Chim. Acta, 2015, 869, 89-95.
[http://dx.doi.org/10.1016/j.aca.2015.02.024] [PMID: 25818144]]
[13]
Dutta, A.K.; Das, S.; Samanta, S.; Samanta, P.K.; Adhikary, B.; Biswas, P. CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level. Talanta, 2013, 107, 361-367.
[http://dx.doi.org/10.1016/j.talanta.2013.01.032] [PMID: 23598235]
[14]
Ling, Y.; Zhang, N.; Qu, F.; Wen, T.; Gao, Z.F.; Li, N.B.; Luo, H.Q. Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 118, 315-320.
[http://dx.doi.org/10.1016/j.saa.2013.08.097] [PMID: 24055680]]
[15]
Hu, F.; Huang, Y.; Zhang, G.; Zhao, R.; Zhang, D. A highly selective fluorescence turn-on detection of hydrogen peroxide and dglucose based on the aggregation/deaggregation of a modified tetraphenylethylene. Tetrahedron Lett.,, 2014, 55,, 1471-1474..
[http://dx.doi.org/10.1016/j.tetlet.2014.01.056]
[16]
Liu, Z.; Liu, L.; Sun, M.; Su, X. A novel and convenient near-infrared fluorescence “turn off-on” nanosensor for detection of glucose and fluoride anions. Biosens. Bioelectron., 2015, 65, 145-151.
[http://dx.doi.org/10.1016/j.bios.2014.10.008] [PMID: 25461150]
[17]
Li, Y.S.; Du, Y.D.; Chen, T.M.; Gao, X.F. A novel immobilization multienzyme glucose fluorescence capillary biosensor. Biosens. Bioelectron., 2010, 25(6), 1382-1388.
[http://dx.doi.org/10.1016/j.bios.2009.10.035] [PMID: 19939662]
[18]
Li, N.; Diao, W.; Han, Y.; Pan, W.; Zhang, T.; Tang, B. MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chemistry, 2014, 20(50), 16488-16491.
[http://dx.doi.org/10.1002/chem.201404625] [PMID: 25352246]
[19]
Yeh, T.Y.; Wang, C.I.; Chang, H.T. Photoluminescent C-dots@RGO for sensitive detection of hydrogen peroxide and glucose. Talanta, 2013, 115, 718-723.
[http://dx.doi.org/10.1016/j.talanta.2013.06.035] [PMID: 24054653]
[20]
Tian, L.; Qiu, J.; Zhou, Y.C.; Sun, S.G. Application of polypyrrole/GOx film to glucose biosensor based on electrochemicalsurface plasmon resonance technique. Mikrochim. Acta,, 2010, 169,, 269-275..
[http://dx.doi.org/10.1007/s00604-010-0344-y]
[21]
Wang, X.; Ma, Y.; Zhao, M.; Zhou, M.; Xiao, Y.; Sun, Z.; Tong, L. Determination of glucose in human stomach cancer cell extracts and single cells by capillary electrophoresis with a micro-biosensor. J. Chromatogr. A, 2016, 1469, 128-134.
[http://dx.doi.org/10.1016/j.chroma.2016.09.054] [PMID: 27688173]
[22]
Jin, L.; Shang, L.; Guo, S.; Fang, Y.; Wen, D.; Wang, L.; Yin, J.; Dong, S. Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens. Bioelectron., 2011, 26(5), 1965-1969.
[http://dx.doi.org/10.1016/j.bios.2010.08.019] [PMID: 20970316]
[23]
Zhai, H.; Feng, T.; Dong, L.; Wang, L.; Wang, X.; Liu, H.; Liu, Y.; Chen, L.; Xie, M. Development of dual-emission ratiometric probe-based on fluorescent silica nanoparticle and CdTe quantum dots for determination of glucose in beverages and human body fluids. Food Chem.,, 2016, 204,, 444-452..
[http://dx.doi.org/10.1016/j.foodchem.2016.02.159] [PMID: 26988523]
[24]
Liu, J.W.; Luo, Y.; Wang, Y.M.; Duan, L.Y.; Jiang, J.H.; Yu, R.Q. Graphitic carbon nitride nanosheets-based ratiometric fluorescent probe for highly sensitive detection of H2O2 and glucose. ACS Appl. Mater. Interfaces, 2016, 8(49), 33439-33445.
[http://dx.doi.org/10.1021/acsami.6b11207] [PMID: 27960386]
[25]
Hu, M.; Tian, J.; Lu, H.T.; Weng, L.X.; Wang, L.H. H2O2-sensitive quantum dots for the label-free detection of glucose. Talanta, 2010, 82(3), 997-1002.
[http://dx.doi.org/10.1016/j.talanta.2010.06.005] [PMID: 20678658]
[26]
Shan, X.; Chai, L.; Ma, J.; Qian, Z.; Chen, J.; Feng, H. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst (Lond.), 2014, 139(10), 2322-2325.
[http://dx.doi.org/10.1039/C3AN02222F] [PMID: 24695439]
[27]
Qu, Z.B.; Zhou, X.; Gu, L.; Lan, R.; Sun, D.; Yu, D.; Shi, G. Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate. Chem. Commun. (Camb.), 2013, 49(84), 9830-9832.
[http://dx.doi.org/10.1039/c3cc44393k] [PMID: 24030709]
[28]
Li, J.; Chen, J.; Chen, Y.; Li, Y.; Shahzad, S.A.; Wang, Y.; Yang, M.; Yu, C. Fluorescence turn-on detection of mercury ions based on the controlled adsorption of a perylene probe onto the gold nanoparticles. Analyst (Lond.), 2016, 141(1), 346-351.
[http://dx.doi.org/10.1039/C5AN01992C] [PMID: 26618370]
[29]
Liu, B.; Sun, Z.; Huang, P.J.; Liu, J. Hydrogen peroxide displacing DNA from nanoceria: mechanism and detection of glucose in serum. J. Am. Chem. Soc., 2015, 137(3), 1290-1295.
[http://dx.doi.org/10.1021/ja511444e] [PMID: 25574932]
[30]
Essawy, A.A.; Attia, M.S. Novel application of pyronin Y fluorophore as high sensitive optical sensor of glucose in human serum. Talanta, 2013, 107, 18-24.
[http://dx.doi.org/10.1016/j.talanta.2012.12.033] [PMID: 23598186]
[31]
Hu, L.; Yuan, Y.; Zhang, L.; Zhao, J.; Majeed, S.; Xu, G. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal. Chim. Acta, 2013, 762, 83-86.
[http://dx.doi.org/10.1016/j.aca.2012.11.056] [PMID: 23327949]
[32]
Liu, X.; Wang, F.; Niazov-Elkan, A.; Guo, W.; Willner, I. Probing biocatalytic transformations with luminescent DNA/silver nanoclusters. Nano Lett., 2013, 13(1), 309-314.
[http://dx.doi.org/10.1021/nl304283c] [PMID: 23252650]
[33]
Wang, L.L.; Qiao, J.; Liu, H.H.; Hao, J.; Qi, L.; Zhou, X.P.; Li, D.; Nie, Z.X.; Mao, L.Q. Ratiometric fluorescent probe based on gold nanoclusters and alizarin red-boronic acid for monitoring glucose in brain microdialysate. Anal. Chem., 2014, 86(19), 9758-9764.
[http://dx.doi.org/10.1021/ac5023293] [PMID: 25157796]
[34]
del Barrio, M.; de Marcos, S.; Cebolla, V.; Heiland, J.; Wilhelm, S.; Hirsch, T.; Galbán, J. Enzyme-induced modulation of the emission of upconverting nanoparticles: towards a new sensing scheme for glucose. Biosens. Bioelectron., 2014, 59, 14-20.
[http://dx.doi.org/10.1016/j.bios.2014.02.076] [PMID: 24686223]
[35]
Yuan, J.; Cen, Y.; Kong, X.J.; Wu, S.; Liu, C.L.; Yu, R.Q.; Chu, X. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl. Mater. Interfaces, 2015, 7(19), 10548-10555.
[http://dx.doi.org/10.1021/acsami.5b02188] [PMID: 25919577]
[36]
Chen, H.; Fang, A.; He, L.; Zhang, Y.; Yao, S. Sensitive fluorescent detection of H2O2 and glucose in human serum based on inner filter effect of squaric acid-iron(III) on the fluorescence of upconversion nanoparticle. Talanta, 2017, 164, 580-587.
[http://dx.doi.org/10.1016/j.talanta.2016.10.008] [PMID: 28107976]
[37]
Li, Y.; Ma, Q.; Liu, Z.; Wang, X.; Su, X. A novel enzyme-mimic nanosensor based on quantum dot-Au nanoparticle@silica mesoporous microsphere for the detection of glucose. Anal. Chim. Acta, 2014, 840, 68-74.
[http://dx.doi.org/10.1016/j.aca.2014.05.027] [PMID: 25086895]
[38]
Ke, Q.; Zheng, Y.; Yang, F.; Zhang, H.; Yang, X. A fluorescence glucose sensor based on pH induced conformational switch of i-motif DNA. Talanta, 2014, 129, 539-544.
[http://dx.doi.org/10.1016/j.talanta.2014.06.011] [PMID: 25127630]
[39]
Ma, H.; Liu, X.; Wang, X.; Li, X.; Yang, C. Sensitive fluorescent light-up probe for enzymatic determination of glucose using carbon dots modified with MnO2 nanosheets. Mikrochim. Acta,, 2016, 184, 177-185..
[http://dx.doi.org/10.1007/s00604-016-2004-3]
[40]
Deng, R.; Xie, X.; Vendrell, M.; Chang, Y.T.; Liu, X. Intracellular glutathione detection using MnO(2)-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc., 2011, 133(50), 20168-20171.
[http://dx.doi.org/10.1021/ja2100774] [PMID: 22107163]
[41]
Wang, J.; Ye, D.X.; Liang, G.H.; Chang, J.; Kong, J.L.; Chen, J.Y. One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 4338-4345..
[http://dx.doi.org/10.1039/C4TB00366G]
[42]
Kai, K.; Yoshida, Y.; Kageyama, H.; Saito, G.; Ishigaki, T.; Furukawa, Y.; Kawamata, J. Room-temperature synthesis of manganese oxide monosheets. J. Am. Chem. Soc., 2008, 130(47), 15938-15943.
[http://dx.doi.org/10.1021/ja804503f] [PMID: 18975943]
[43]
Sato, S.; Swihart, M.T. Propionic-acid-terminated silicon nanoparticles: Synthesis and optical characterization Chem. Mater., 2006, 18, 4083-4088.
[http://dx.doi.org/10.1021/cm060750t]
[44]
Jacobsen, D.W.; Gatautis, V.J.; Green, R.; Robinson, K.; Savon, S.R.; Secic, M.; Ji, J.; Otto, J.M.; Taylor, L.M., Jr Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects. Clin. Chem., 1994, 40(6), 873-881.
[PMID: 8087981]
[45]
Michelet, F.; Gueguen, R.; Leroy, P.; Wellman, M.; Nicolas, A.; Siest, G. Blood and plasma glutathione measured in healthy subjects by HPLC: relation to sex, aging, biological variables, and life habits. Clin. Chem., 1995, 41(10), 1509-1517.
[PMID: 7586526]
[46]
Zhang, J.; Wang, J.; Liu, J.; Ning, L.; Zhu, X.; Yu, B.; Liu, X.; Yao, X.; Zhang, H. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells. Anal. Chem., 2015, 87(9), 4856-4863.
[http://dx.doi.org/10.1021/acs.analchem.5b00377] [PMID: 25875053]
[47]
Wang, J. Electrochemical glucose biosensors. Chem. Rev., 2008, 108(2), 814-825.
[http://dx.doi.org/10.1021/cr068123a] [PMID: 18154363]
[48]
Kong, K.V.; Lam, Z.; Lau, W.K.; Leong, W.K.; Olivo, M. A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose. J. Am. Chem. Soc., 2013, 135(48), 18028-18031.
[http://dx.doi.org/10.1021/ja409230g] [PMID: 24168766]
[49]
Ye, Y.; Kong, T.; Yu, X.; Wu, Y.; Zhang, K.; Wang, X. Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta, 2012, 89, 417-421.
[http://dx.doi.org/10.1016/j.talanta.2011.12.054] [PMID: 22284511]
[50]
Wei, H.; Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem., 2008, 80(6), 2250-2254.
[http://dx.doi.org/10.1021/ac702203f] [PMID: 18290671]
[51]
Qiao, F.; Qi, Q.; Wang, Z.; Xu, K.; Ai, S. MnSe-loaded g-C3N4 nanocomposite with synergistic peroxidase-like catalysis: Synthesis and application toward colorimetric biosensing of H2O2 and glucose. Sensor. Actuat. Biol. Chem., 2016, 229, 379-386.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy