Abstract
Recent and new results which support a drug-DNA covalent bonding mechanism for cell toxicity of the clinical antitumor drugs, daunorubicin, doxorubicin, and epidoxorubicin, are summarized. The mechanism involves the iron complex of the drugs inducing oxidative stress to yield formaldehyde, which then mediates covalent attachment to G-bases of DNA. At NGC sites the combination of covalent and non-covalent drug interactions serve to virtually crosslink the DNA. Structural data for virtual crosslinks are compared as a function of drug structure. Elucidation of the mechanism led to the synthesis and evaluation of drug formaldehyde conjugates, Daunoform, Doxoform, and Epidoxoform, as improved chemotherapeutics. Drug uptake, nuclear targeting, drug release, and cytotoxicity of the clinical drugs by sensitive and resistant breast and prostate cancer cells are contrasted with those of the corresponding formaldehyde conjugates. Conjugates are taken up better, retained longer, and are more toxic to a wide variety of tumor cells. The kinetics of drug release from Doxoform and Epidoxoform treated MCF-7/Adr cells are biexponential and correlate with the biexponential kinetics of drug release from extracellular DNA. The results of the lead conjugate, Epidoxoform, in the National Cancer Institute 60 human tumor cell screen are presented and discussed in terms of some resistance mechanisms. Epidoxoform shows increased toxicity to all panels relative to doxorubicin and epidoxorubicin, and this enhanced toxicity is especially evident with the more resistant cell lines.
Current Medicinal Chemistry
Title: Nuclear Targeting and Retention of Anthracycline Antitumor Drugs in Sensitive and Resistant Tumor Cells
Volume: 8 Issue: 1
Author(s): Dylan J. Taatjes and Tad H. Koch
Affiliation:
Abstract: Recent and new results which support a drug-DNA covalent bonding mechanism for cell toxicity of the clinical antitumor drugs, daunorubicin, doxorubicin, and epidoxorubicin, are summarized. The mechanism involves the iron complex of the drugs inducing oxidative stress to yield formaldehyde, which then mediates covalent attachment to G-bases of DNA. At NGC sites the combination of covalent and non-covalent drug interactions serve to virtually crosslink the DNA. Structural data for virtual crosslinks are compared as a function of drug structure. Elucidation of the mechanism led to the synthesis and evaluation of drug formaldehyde conjugates, Daunoform, Doxoform, and Epidoxoform, as improved chemotherapeutics. Drug uptake, nuclear targeting, drug release, and cytotoxicity of the clinical drugs by sensitive and resistant breast and prostate cancer cells are contrasted with those of the corresponding formaldehyde conjugates. Conjugates are taken up better, retained longer, and are more toxic to a wide variety of tumor cells. The kinetics of drug release from Doxoform and Epidoxoform treated MCF-7/Adr cells are biexponential and correlate with the biexponential kinetics of drug release from extracellular DNA. The results of the lead conjugate, Epidoxoform, in the National Cancer Institute 60 human tumor cell screen are presented and discussed in terms of some resistance mechanisms. Epidoxoform shows increased toxicity to all panels relative to doxorubicin and epidoxorubicin, and this enhanced toxicity is especially evident with the more resistant cell lines.
Export Options
About this article
Cite this article as:
Taatjes J. Dylan and Koch H. Tad, Nuclear Targeting and Retention of Anthracycline Antitumor Drugs in Sensitive and Resistant Tumor Cells, Current Medicinal Chemistry 2001; 8 (1) . https://dx.doi.org/10.2174/0929867013374029
DOI https://dx.doi.org/10.2174/0929867013374029 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Simultaneous Modeling of Antimycobacterial Activities and ADMET Profiles: A Chemoinformatic Approach to Medicinal Chemistry
Current Topics in Medicinal Chemistry Update of QSAR & Docking & Alignment Studies of the DNA Polymerase Inhibitors
Current Bioinformatics Irreversible Protein Kinase Inhibitors
Current Medicinal Chemistry Contemporary Review of Drugs Used to Treat Obesity
Cardiovascular & Hematological Agents in Medicinal Chemistry Computational Methods and Algorithms for Mass-Spectrometry Based Differential Proteomics
Current Proteomics Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates
Current Medicinal Chemistry Exosome-based Tumor Therapy: Opportunities and Challenges
Current Drug Metabolism Research Progress of Bioactive Proteins from the Edible and Medicinal Mushrooms
Current Protein & Peptide Science Glutamate Carboxypeptidase II: An Overview of Structural Studies and Their Importance for Structure-Based Drug Design and Deciphering the Reaction Mechanism of the Enzyme
Current Medicinal Chemistry Selenium Compounds Biotransformed by Mushrooms: Not Only Dietary Sources, But Also Toxicity Mediators
Current Nutrition & Food Science Sensory-Motor Integration in the Medial Medulla
Current Neuropharmacology Melittin: A Natural Peptide with Expanded Therapeutic Applications
The Natural Products Journal A Comprehensive Review on Chrysin: Emphasis on Molecular Targets, Pharmacological Actions and Bio-pharmaceutical Aspects
Current Drug Targets Small Molecule Antagonists of Integrin Receptors
Current Medicinal Chemistry Nanotechnology for Alzheimer Disease
Current Alzheimer Research Promises and Challenges of MicroRNA-based Treatment of Multiple Myeloma
Current Cancer Drug Targets Targeting Histone 3 Variants Epigenetic Landscape and Inhibitory Immune Checkpoints: An Option for Paediatric Brain Tumours Therapy
Current Neuropharmacology Prospective Plant Based Anticancer Lead Molecules
Current Topics in Medicinal Chemistry Understanding Non-Mendelian Genetic Risk
Current Genomics Biologically Active Natural Products of the Genus Callicarpa
Current Bioactive Compounds