Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Elastic Bilayer Vesicles of Flurbiprofen for Transdermal Delivery: Development and In-Vitro Characterization

Author(s): Rashmi Sareen* and Nitin Jain

Volume 10, Issue 1, 2020

Page: [54 - 60] Pages: 7

DOI: 10.2174/2210303109666190621142547

Price: $65

Abstract

Objective: The purpose of the present study was to develop a novel elastic bilayer vesicle entrapped with Flurbiprofen (FLB) for transdermal use to avoid adverse effect associated with oral administration of the drug. Encapsulation of drug in vesicle prolongs the existence of the drug in the systemic circulation and thus enhances penetration into the target site and reduces toxicity.

Method: Niosomes were prepared using surfactants (span 40 and span 60) and cholesterol in the molar ratio of 1:1, 2:1, 3:1 and 3:2. Vesicles prepared by thin film hydration method were characterized for morphology, vesicle size and zeta potential, thermal analysis and Entrapment Efficiency (EE).

Results: Results revealed that the EE and size of niosomes were influenced by surfactant type and cholesterol ratio. F8 (span 60: cholesterol in 3:2) exhibited the highest encapsulation of FLB (76.77 ± 0.55) with vesicle size of 154 ± 2.96 nm and Polydispersity Index (PDI) of 0.09. The optimized formulation F8 was selected for incorporation into the gel. Niosomal gel was evaluated for homogeneity, pH, spreadability and in-vitro drug release.

Conclusion: All the parameters of niosomal gel were found to be satisfactory and in-vitro release study revealed prolonged and complete release of entrapped FLB (93.23±0.65%) in comparison to FLB hydrogel (42.65±0.29%). The results suggested that niosomes may serve as promising vehicles for the transdermal delivery of FLB.

Keywords: Flurbiprofen, niosomal gel, vesicle, encapsulation, surfactant, transdermal.

Graphical Abstract
[1]
Mottaghitalab, F.; Farokhi, M.; Shokrgozar, M.A.; Atyabi, F.; Hosseinkhani, H. Silk fibroin nanoparticle as a novel drug delivery system. J. Control. Release, 2015, 206, 161-176.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.020] [PMID: 25797561]
[2]
Abedini, F.; Ebrahimi, M.; Roozbehani, A.H.; Domb, A.J.; Hosseinkhani, H. Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym. Adv. Technol., 2018, 29, 2564-2573.
[http://dx.doi.org/10.1002/pat.4375]
[3]
He, W.J.; Hosseinkhani, H.; Hong, P.D.; Chiang, C.H.; Yu, D.S. Magnetic nanoparticles for imaging technology. Int. J. Nanotechnol., 2013, 10, 930-944.
[http://dx.doi.org/10.1504/IJNT.2013.058120]
[4]
Ghadiri, M.; Vasheghani-Farahani, E.; Atyabi, F.; Kobarfard, F.; Mohamadyar-Toupkanlou, F.; Hosseinkhani, H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J. Biomed. Mater. Res. A, 2017, 105(10), 2851-2864.
[http://dx.doi.org/10.1002/jbm.a.36145] [PMID: 28639394]
[5]
Sareen, R.; Jain, N.; Rajkumari, A.; Dhar, K.L. pH triggered delivery of curcumin from Eudragit-coated chitosan microspheres for inflammatory bowel disease: characterization and pharmacodynamic evaluation. Drug Deliv., 2016, 23(1), 55-62.
[http://dx.doi.org/10.3109/10717544.2014.903534] [PMID: 24758141]
[6]
Muzzalupo, R.; Tavano, L. Niosomal drug delivery for transdermal targeting: recent advances. Dovepress, 2015, 4, 23-33.
[http://dx.doi.org/10.2147/RRTD.S64773]
[7]
Philip, A.K.; Dabas, S.; Pathak, K. Optimized prodrug approach: a means for achieving enhanced anti-inflammatory potential in experimentally induced colitis. J. Drug Target., 2009, 17(3), 235-241.
[http://dx.doi.org/10.1080/10611860902718656] [PMID: 19558362]
[8]
Dhaneshwar, S.S.; Gairola, N.; Kandpal, M.; Vadnerkar, G.; Bhatt, L. Colon-specific, mutual azo prodrug of 5-aminosalicylic acid with L-tryptophan: synthesis, kinetic studies and evaluation of its mitigating effect in trinitrobenzenesulfonic acid-induced colitis in rats. Bioorg. Med. Chem., 2007, 15(14), 4903-4909.
[http://dx.doi.org/10.1016/j.bmc.2007.04.045] [PMID: 17499512]
[9]
Li, X.; Ding, L.; Xu, Y.; Wang, Y.; Ping, Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int. J. Pharm., 2009, 373(1-2), 116-123.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.023] [PMID: 19429296]
[10]
Shen, Y.; Tu, J. Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J., 2007, 9(3), E371-E377.
[http://dx.doi.org/10.1208/aapsj0903044] [PMID: 18170984]
[11]
Manosroi, A.; Khanrin, P.; Lohcharoenkal, W.; Werner, R.G.; Götz, F.; Manosroi, W.; Manosroi, J. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. Int. J. Pharm., 2010, 392(1-2), 304-310.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.064] [PMID: 20381599]
[12]
Balakrishnan, P.; Shanmugam, S.; Lee, W.S.; Lee, W.M.; Kim, J.O.; Oh, D.H.; Kim, D.D.; Kim, J.S.; Yoo, B.K.; Choi, H.G.; Woo, J.S.; Yong, C.S. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int. J. Pharm., 2009, 377(1-2), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.020] [PMID: 19394413]
[13]
Mohanty, C.; Acharya, S.; Mohanty, A.K.; Dilnawaz, F.; Sahoo, S.K. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine (Lond.), 2010, 5(3), 433-449.
[http://dx.doi.org/10.2217/nnm.10.9] [PMID: 20394536]
[14]
Choi, M.J.; Maibach, H.I. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol. Physiol., 2005, 18(5), 209-219.
[http://dx.doi.org/10.1159/000086666] [PMID: 16015019]
[15]
Kushla, G.P.; Zatz, J.L.; Mills, O.H., Jr; Berger, R.S. Noninvasive assessment of anesthetic activity of topical lidocaine formulations. J. Pharm. Sci., 1993, 82(11), 1118-1122.
[http://dx.doi.org/10.1002/jps.2600821110] [PMID: 8289124]
[16]
Muzzalupo, R.; Tavano, L.; Cassano, R.; Trombino, S.; Ferrarelli, T.; Picci, N. A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. Eur. J. Pharm. Biopharm., 2011, 79(1), 28-35.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.020] [PMID: 21303691]
[17]
Agarwal, R.; Katare, O.P.; Vyas, S.P. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int. J. Pharm., 2001, 228(1-2), 43-52.
[http://dx.doi.org/10.1016/S0378-5173(01)00810-9] [PMID: 11576767]
[18]
Manosroi, A.; Kongkaneramit, L.; Manosroi, J. Characterization of amphotericin B liposome formulations. Drug Dev. Ind. Pharm., 2004, 30(5), 535-543.
[http://dx.doi.org/10.1081/DDC-120037484] [PMID: 15244089]
[19]
Sathali, A.H.A.; Rajalakshmi, G. Evaluation of transdermal targeted niosomal drug delivery of terbinafine hydrochloride. Int. J. Pharm. Tech. Res., 2010, 2(3), 2081-2089.
[20]
Akhter, S.; Kushwaha, S.; Warsi, M.H.; Anwar, M.; Ahmad, M.Z.; Ahmad, I.; Talegaonkar, S.; Khan, Z.I.; Khar, R.K.; Ahmad, F.J. Development and evaluation of nanosized niosomal dispersion for oral delivery of Ganciclovir. Drug Dev. Ind. Pharm., 2012, 38(1), 84-92.
[http://dx.doi.org/10.3109/03639045.2011.592529] [PMID: 21726136]
[21]
Orlu, M.; Cevher, E.; Araman, A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int. J. Pharm., 2006, 318(1-2), 103-117.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.025] [PMID: 16687222]
[22]
Anghore, D.; Kulkarni, G.T. Development of Novel Nano Niosomes as Drug Delivery System of Spermacoce hispida Extract and In Vitro Antituberculosis Activity. Curr. Nanomater., 2017, 2(1), 17-23.
[http://dx.doi.org/10.2174/2405461502666170314151949]
[23]
Sareen, R.; Jain, N.; Dhar, K.L. Development of colon specific microspheres of flurbiprofen for inflammatory bowel disease. Curr. Drug Deliv., 2013, 10(5), 564-571.
[http://dx.doi.org/10.2174/1567201811310050008] [PMID: 23360241]
[24]
Manosroi, A.; Chutoprapat, R.; Abe, M.; Manosroi, J. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. Int. J. Pharm., 2008, 352(1-2), 248-255.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.013] [PMID: 18036754]
[25]
Loganathan, V.; Jaswanth, A.; Sulaiman, A.; Rajaseskaran, A.; Manimaran, S.; Kumar, S.B. The effects of polymers and permeation enhancers on release of flurbiprofen from gel formulation. Indian J. Pharm. Sci., 2001, 200-204.
[26]
El-Ridy, M.S.; Yehia, S.A.; Mohsen, A.M.; El-Awdan, S.A.; Darwish, A.B. Formulation of Niosomal Gel for Enhanced Transdermal Lornoxicam Delivery: In-Vitro and In-Vivo Evaluation. Curr. Drug Deliv., 2018, 15(1), 122-133.
[http://dx.doi.org/10.2174/1567201814666170224141548] [PMID: 28240177]
[27]
Sareen, R.; Kumar, S.; Gupta, G.D. Meloxicam carbopol-based gels: characterization and evaluation. Curr. Drug Deliv., 2011, 8(4), 407-415.
[http://dx.doi.org/10.2174/156720111795768013] [PMID: 21453256]
[28]
Manosroi, A.; Jantrawut, P.; Manosroi, J. Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium. Int. J. Pharm., 2008, 360(1-2), 156-163.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.033] [PMID: 18539416]
[29]
Sareen, R.; Nath, K.; Jain, N.; Dhar, K.L. Curcumin loaded microsponges for colon targeting in inflammatory bowel disease: fabrication, optimization, and in vitro and pharmacodynamic evaluation. BioMed Res. Int., 2014, 2014340701
[http://dx.doi.org/10.1155/2014/340701] [PMID: 25093165]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy